题目内容

若函数f(x)为定义域D上的单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数.若函数g(x)=x2+m是(-∞,0)上的正函数,则实数m的取值范围为(  )
分析:根据函数g(x)=x2+m是(-∞,0)上的正函数,则g(a)=b,g(b)=a,建立方程组,消去b,求出a的取值范围,转化成关于a的方程a2+a+m+1=0在区间(-1,-
1
2
)内有实数解进行求解.
解答:解:因为函数g(x)=x2+m是(-∞,0)上的正函数,所以a<b<0,
所以当x∈[a,b]时,函数单调递减,则g(a)=b,g(b)=a,
即a2+m=b,b2+m=a,
两式相减得a2-b2=b-a,即b=-(a+1),
代入a2+m=b得a2+a+m+1=0,
由a<b<0,且b=-(a+1),
∴a<-(a+1)<0,
a<-a-1
a+1>0
,∴
a<-
1
2
a>-1

解得-1<a<-
1
2

故关于a的方程a2+a+m+1=0在区间(-1,-
1
2
)内有实数解,
记h(a)=a2+a+m+1,
则 h(-1)>0,h(-
1
2
)<0,即1-1+m+1>0且
1
4
-
1
2
+m+1<0

解得m>-1且m<-
3
4

-1<m<-
3
4

故选A.
点评:本题主要考查新定义的应用,综合性较强,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网