题目内容
(2013•青岛一模)已知函数f(x)的图象经过点(1,5),且对任意的x∈R都有f(x+1)=f(x)+3,数列{an}满足a1=1,an+1=
(k为正整数).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求a1+3a3+5a5+…+(2n-1)a2n-1(n∈N*)的值.
|
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求a1+3a3+5a5+…+(2n-1)a2n-1(n∈N*)的值.
分析:(Ⅰ)由f(x+1)=f(x)+3⇒f(n+1)-f(n)=3,从而可知{f(n)}是以3为公差的等差数列,f(1)=5,结合题意an+1=
(k为正整数)可求数列{an}的通项公式;
(Ⅱ)令T=a1+3a3+5a5+…+(2n-1)a2n-1,可求得T=[1+3×32+5×34+…+(2n-1)×32n-2]+2(n2-1),利用错位相减法即可求得其和.
|
(Ⅱ)令T=a1+3a3+5a5+…+(2n-1)a2n-1,可求得T=[1+3×32+5×34+…+(2n-1)×32n-2]+2(n2-1),利用错位相减法即可求得其和.
解答:解:(Ⅰ)由题意知f(1)=5,又对任意的x∈R都有f(x+1)=f(x)+3,所以有f(n+1)-f(n)=3,从而{f(n)}是以f(1)=5为首项,3为公差的等差数列,
故f(n)=5+3(n-1)=3n+2…(2分)
当n为偶数时,an=3n-1,
当n为奇数且n≥3时,an=f(an-1)=3an-1+2=3•3n-2+2=3n-1+2,
综上,an=
(k为正整数)…(6分)
(Ⅱ)a1+3a3+5a5+…+(2n-1)a2n-1
=1+3×(32+2)+5×(34+2)+…+(2n-1)×(32n-2+2)
=[1+3×32+5×34+…+(2n-1)×32n-2]+2[3+5+7+…+(2n-1)]
=[1+3×32+5×34+…+(2n-1)×32n-2]+2(n2-1)
令T=1+3×32+5×34+…+(2n-1)×32n-2
则9T=32+3×34+5×36+…+(2n-1)×32n
两式相减:
-8T=1+2(32+34+36+…+32n-2)-(2n-1)×32n,
T=(
-
)•32n+
.
所以a1+3a3+5a5+…+(2n-1)a2n-1=(
-
)•32n+2n2-
…(12分)
故f(n)=5+3(n-1)=3n+2…(2分)
当n为偶数时,an=3n-1,
当n为奇数且n≥3时,an=f(an-1)=3an-1+2=3•3n-2+2=3n-1+2,
综上,an=
|
(Ⅱ)a1+3a3+5a5+…+(2n-1)a2n-1
=1+3×(32+2)+5×(34+2)+…+(2n-1)×(32n-2+2)
=[1+3×32+5×34+…+(2n-1)×32n-2]+2[3+5+7+…+(2n-1)]
=[1+3×32+5×34+…+(2n-1)×32n-2]+2(n2-1)
令T=1+3×32+5×34+…+(2n-1)×32n-2
则9T=32+3×34+5×36+…+(2n-1)×32n
两式相减:
-8T=1+2(32+34+36+…+32n-2)-(2n-1)×32n,
T=(
| n |
| 4 |
| 5 |
| 32 |
| 5 |
| 32 |
所以a1+3a3+5a5+…+(2n-1)a2n-1=(
| n |
| 4 |
| 5 |
| 32 |
| 59 |
| 32 |
点评:本题考查等差数列与等比数列的综合,突出考查错位相减法求和,考查分析与综合运算能力,属于难题.
练习册系列答案
相关题目