题目内容

已知等差数列{an}的公差d>0,其前n项和为Sn,若S3=12,且2a1,a2,1+a3成等比数列.
(I)求{an}的通项公式;(II)记bn=
1anan+1
(n∈N*)
,求数列{bn}的前n项和Tn
分析:(I)直接由S3=12以及2a1,a2,1+a3成等比数列,列出关于首项和公差的等式,解方程即可求{an}的通项公式;
(II)先把数列{bn}的通项裂开,再求和即可.
解答:解:(I)由题得:
2a1(a3+1)=a22
a1+a2+a3=12

a1(a1+2d+1) =8
a1+d=4
,得d2+d-12=0.
∵d>0,∴d=3,a1=1.
∴{an}的通项公式an=1+3(n-1)=3n-2.
(II)∵bn=
1
anan+1
=
1
(3n-2)(3n+1)
=
1
3
1
3n-2
-
1
3n+1
).
∴Tn=b1+b2+b3+…+bn
=
1
3
[(1-
1
4
)+(
1
4
-
1
7
)+…+(
1
3n-2
-
1
3n+1
)]
=
1
3
(1-
1
3n+1

=
n
3n+1
点评:本题考查等差数列与等比数列的基础知识以及裂项求和的应用.第一问考查方程思想在解决数列问题中的应用.在等差数列、等比数列问题中基本量是解题的关键,一般是根据已知条件把基本量求出来,然后在解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网