题目内容
已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的
充要
充要
条件.分析:由题意,可由函数的性质得出f(x)为[-1,0]上是减函数,再由函数的周期性即可得出f(x)为[3,4]上的减函数,由此证明充分性,再由f(x)为[3,4]上的减函数结合周期性即可得出f(x)为[-1,0]上是减函数,再由函数是偶函数即可得出f(x)为[0,1]上的增函数,由此证明必要性,即可得出正确选项
解答:解:由题意,f(x)是定义在R上的偶函数,f(x)为[0,1]上的增函数
所以f(x)为[-1,0]上是减函数
又f(x)是定义在R上的函数,且以2为周期
[3,4]与[-1,0]相差两个周期,故两区间上的单调性一致,所以可以得出f(x)为[3,4]上的减函数,故充分性成立,
若f(x)为[3,4]上的减函数,由周期性可得出f(x)为[-1,0]上是减函数,再由函数是偶函数可得出f(x)为[0,1]上的增函数,故必要性成立
综上,“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件.
故答案为:充要.
所以f(x)为[-1,0]上是减函数
又f(x)是定义在R上的函数,且以2为周期
[3,4]与[-1,0]相差两个周期,故两区间上的单调性一致,所以可以得出f(x)为[3,4]上的减函数,故充分性成立,
若f(x)为[3,4]上的减函数,由周期性可得出f(x)为[-1,0]上是减函数,再由函数是偶函数可得出f(x)为[0,1]上的增函数,故必要性成立
综上,“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件.
故答案为:充要.
点评:本题考查充分性与必要性的判断,解题的关键是理解充分性与必要性证明的方向,即由那个条件到那个条件的证明是充分性,那个方向是必要性,初学者易搞不清证明的方向导致表述上出现逻辑错误,
练习册系列答案
相关题目