题目内容
已知数列{an}的前n项和是sn=n2-2n+2,
(1)求数列{an}的通项公式;
(2)令bn=anxn(x∈R且x≠0).求数列{bn}前n项和的公式.
(1)求数列{an}的通项公式;
(2)令bn=anxn(x∈R且x≠0).求数列{bn}前n项和的公式.
(1)当n=1时,a1=S1=1-2+2=1;
当n≥2时,an=Sn-Sn-1=n2-2n+2-[(n-1)2-2(n-1)+2]
=2n-3.
∴an=
.
(2)设数列{bn}前n项和为Tn.
b1=x,
n≥2时,bn=(2n-3)xn.
∴当n=1时,T1=b1=x;
当n≥2时,Tn=x+x2+3x3+…+(2n-3)xn,
xTn=x2+x3+3x4+…+(2n-5)xn+(2n-3)xn+1
∴(1-x)Tn=x+2x3+2x4+…+2xn-(2n-3)xn+1
①x≠1,Tn=
+
-
.
②当x=1时,T1=1,
n≥2时,Tn=1+1+3+…+(2n-3)=1+(n-1)2=n2-2n+2.
当n≥2时,an=Sn-Sn-1=n2-2n+2-[(n-1)2-2(n-1)+2]
=2n-3.
∴an=
|
(2)设数列{bn}前n项和为Tn.
b1=x,
n≥2时,bn=(2n-3)xn.
∴当n=1时,T1=b1=x;
当n≥2时,Tn=x+x2+3x3+…+(2n-3)xn,
xTn=x2+x3+3x4+…+(2n-5)xn+(2n-3)xn+1
∴(1-x)Tn=x+2x3+2x4+…+2xn-(2n-3)xn+1
①x≠1,Tn=
| x |
| 1-x |
| 2x3-2xn+1 |
| (1-x)2 |
| (2n-3)xn+1 |
| 1-x |
②当x=1时,T1=1,
n≥2时,Tn=1+1+3+…+(2n-3)=1+(n-1)2=n2-2n+2.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |