题目内容
已知函数f(x)=
+log2
.
(Ⅰ)求证:f(x)的图象关于点(
,
)成中心对称;
(Ⅱ)若Sn=f(
)+f(
)+…+f(
)(n∈N*,且n≥2),求Sn;
(Ⅲ)已知a1=
,an=
(n≥2,n∈N*),数列{an}的前n项和为Tn.若Tn<λ(Sn+1+1)对一切n∈N*都成立,求λ的取值范围.
| 1 |
| 2 |
| x |
| 1-x |
(Ⅰ)求证:f(x)的图象关于点(
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)若Sn=f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
(Ⅲ)已知a1=
| 2 |
| 3 |
| 1 |
| (Sn+1)(Sn+1+1) |
证明:(Ⅰ)在函数f(x)图象上任取一点M(x,y),M关于(
,
)的对称点为N(x1,y1),
∴
,∴
①.
∵f(x)=
+log2
,即y=
+log2
②.
将①代入②得,1-y1=
+log2
=
+log2
=
-log2
,
∴y1=
+log2
,∴N(x1,y1)也在f(x)图象上,∴f(x)图象关于点(
,
)成中心对称.
(直接证f(x)+f(1-x)=1得f(x)图象关于点(
,
)成中心对称,也可给分)(5分)
(Ⅱ)由(Ⅰ)可知f(x)+f(1-x)=1,
又∵n≥2时,Sn=f(
)+f(
)+…+f(
)③,Sn=f(
)+f(
)+••+f(
)④
③+④得2Sn=n-1,∴Sn=
.(9分)
(Ⅲ)由(Ⅱ)可知,当n≥2时,an=
=
=4(
-
),
∴当n≥2时,Tn=
+4(
-
+
-
+…+
-
)=
+4(
-
)=2-
;
∵当n=1时,T1=
也适合上式,∴Tn=2-
(n∈N*).
由Tn<λ(Sn+1+1)得,2-
<λ(
+1),∴λ>
(2-
),即λ>
-
.
令t=
,则
-
=2t-2t2=-2(t-
)2+
,
又∵n∈N*,∴0<t≤
,
∴当t=
时,即n=2时,
-
最大,它的最大值是
,∴λ∈(
,+∞).(14分)
| 1 |
| 2 |
| 1 |
| 2 |
∴
|
|
∵f(x)=
| 1 |
| 2 |
| x |
| 1-x |
| 1 |
| 2 |
| x |
| 1-x |
将①代入②得,1-y1=
| 1 |
| 2 |
| 1-x1 |
| 1-(1-x1) |
| 1 |
| 2 |
| 1-x1 |
| x1 |
| 1 |
| 2 |
| x1 |
| 1-x1 |
∴y1=
| 1 |
| 2 |
| x1 |
| 1-x1 |
| 1 |
| 2 |
| 1 |
| 2 |
(直接证f(x)+f(1-x)=1得f(x)图象关于点(
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)由(Ⅰ)可知f(x)+f(1-x)=1,
又∵n≥2时,Sn=f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| n-1 |
| n |
| n-2 |
| n |
| 1 |
| n |
③+④得2Sn=n-1,∴Sn=
| n-1 |
| 2 |
(Ⅲ)由(Ⅱ)可知,当n≥2时,an=
| 1 | ||||
(
|
| 4 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴当n≥2时,Tn=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| n+2 |
| 4 |
| n+2 |
∵当n=1时,T1=
| 2 |
| 3 |
| 4 |
| n+2 |
由Tn<λ(Sn+1+1)得,2-
| 4 |
| n+2 |
| n |
| 2 |
| 2 |
| n+2 |
| 4 |
| n+2 |
| 4 |
| n+2 |
| 8 |
| (n+2)2 |
令t=
| 2 |
| n+2 |
| 4 |
| n+2 |
| 8 |
| (n+2)2 |
| 1 |
| 2 |
| 1 |
| 2 |
又∵n∈N*,∴0<t≤
| 2 |
| 3 |
∴当t=
| 1 |
| 2 |
| 4 |
| n+2 |
| 8 |
| (n+2)2 |
| 1 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目