题目内容
已知函数y=f(x)满足
=(x2,y),
=(x-
,-1),且
•
=-1.
如果存在正项数列{an}满足:a1=
, f(a1)+f(a2)+f(a3)+…+f(an)-n=a13+a23+a33+…+an3-n2an(n∈N*).
(1)求数列{an}的通项;
(2)求证:
+
+
+…+
<1;
(3)求证:
+
+
+…+
<1+
.
| a |
| b |
| 1 |
| x |
| a |
| b |
如果存在正项数列{an}满足:a1=
| 1 |
| 2 |
(1)求数列{an}的通项;
(2)求证:
| a1 |
| 1 |
| a2 |
| 2 |
| a3 |
| 3 |
| an |
| n |
(3)求证:
|
|
|
|
| 2 |
分析:(1)利用
•
=-1,可得y=f(x)=x3-x+1(x≠0),代入f(a1)+f(a2)+f(a3)+…+f(an)-n=a13+a23+a33+…+an3-n2an(n∈N*).可得a1+a2+a3+…+an=n2an .再写一式a1+a2+a3+…+an-1=(n-1)2an-1(n≥2),相减,再利用叠乘法求数列{an}的通项;
(2)由(1)得
=
=
(
-
)=
-(
-
)<
-(
-
)=(
-
)+(
-
)(i>1),利用放缩法可证;
(3)利用放缩法得
=
<
<
•
=
-
(i≥2)
代入求和即证.
| a |
| b |
(2)由(1)得
| ai |
| i |
| 1 |
| i2(i+1) |
| 1 |
| i |
| 1 |
| i |
| 1 |
| i+1 |
| 1 |
| i2 |
| 1 |
| i |
| 1 |
| i+1 |
| 1 |
| i(i-1) |
| 1 |
| i |
| 1 |
| i+1 |
| 1 |
| i-1 |
| 1 |
| i |
| 1 |
| i |
| 1 |
| i+1 |
(3)利用放缩法得
|
|
|
| 1 | ||||
|
| 2 | ||||
|
| 1 | ||
|
| 1 | ||
|
代入求和即证.
解答:解:(1)
•
=-1,∴y=f(x)=x3-x+1(x≠0)
∵f(a1)+f(a2)+f(a3)+…+f(an)-n=a13+a23+a33+…+an3-n2an(n∈N*).
所以代入得a1+a2+a3+…+an=n2an ①
又a1+a2+a3+…+an-1=(n-1)2an-1(n≥2)②
①-②得
=
则an=
•
•…•
=
(n∈N*)…(4分)
(2)由(1)得
=
=
(
-
)=
-(
-
)<
-(
-
)=(
-
)+(
-
)(i>1)
∴
+
+
+…+
<
+
-(
-
)=1+
-
=1-
<1…(9分)
(3)∵
<
=
∴
<
而
=
<
<
•
=
-
(i≥2)
所以
+
+
+…+
<
+(
-
)+(
-
)+…+(
-
)<
+1+
-
-
<1+
…(14分)
| a |
| b |
∵f(a1)+f(a2)+f(a3)+…+f(an)-n=a13+a23+a33+…+an3-n2an(n∈N*).
所以代入得a1+a2+a3+…+an=n2an ①
又a1+a2+a3+…+an-1=(n-1)2an-1(n≥2)②
①-②得
| an |
| an-1 |
| n-1 |
| n+1 |
| an |
| an-1 |
| an-1 |
| an-2 |
| a2 |
| a1 |
| 1 |
| n(n+1) |
(2)由(1)得
| ai |
| i |
| 1 |
| i2(i+1) |
| 1 |
| i |
| 1 |
| i |
| 1 |
| i+1 |
| 1 |
| i2 |
| 1 |
| i |
| 1 |
| i+1 |
| 1 |
| i(i-1) |
| 1 |
| i |
| 1 |
| i+1 |
| 1 |
| i-1 |
| 1 |
| i |
| 1 |
| i |
| 1 |
| i+1 |
∴
| a1 |
| 1 |
| a2 |
| 2 |
| a3 |
| 3 |
| an |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n(n+1) |
(3)∵
| ||||
| 2 |
|
| i |
| 1 | ||
|
| 2 | ||||
|
而
|
|
|
| 1 | ||||
|
| 2 | ||||
|
| 1 | ||
|
| 1 | ||
|
所以
|
|
|
|
| ||
| 1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 2 |
点评:本题的考点是数列与不等式的综合,主要考查叠乘法求数列的通项,考查裂项法求和,考查放缩法,关键是合理运用通项,巧妙放缩.
练习册系列答案
相关题目