题目内容
等差数列{an}的各项均为正数,a1=1,前n项和为Sn.等比数列{bn}中,b1=1,且b2S2=6,b2+S3=8.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)求
+
+…+
.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)求
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
(Ⅰ)设等差数列{an}的公差为d,d>0,{bn}的等比为q
则an=1+(n-1)d,bn=qn-1
依题意有
,解得
或
(舍去)
故an=n,bn=2n-1
(Ⅱ)由(1)可得Sn=1+2+…+n=
n(n+1)
∴
=2(
-
)
∴
+
+…+
=2[(1-
)+(
-
)+…+(
-
)]
=2(1-
)=
.
则an=1+(n-1)d,bn=qn-1
依题意有
|
|
|
故an=n,bn=2n-1
(Ⅱ)由(1)可得Sn=1+2+…+n=
| 1 |
| 2 |
∴
| 1 |
| sn |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
| 2n |
| n+1 |
练习册系列答案
相关题目