题目内容
已知数列{an}满足a1=
,an+1=
(n∈N*).
(1)求证:数列{
}是等差数列.
(2)令bn=|
|,求{bn}的前n项和Sn.
| 1 |
| 11 |
| an |
| 1-2an |
(1)求证:数列{
| 1 |
| an |
(2)令bn=|
| 1 |
| an |
分析:(1)由an≠0,an+1=
,两边求倒数整理可得,
-
=-2,可证
(2)由(1)可得
=11+(n-1)×(-2)=-2n+13,则bn=|
|=|13-2n|=
,设数列列{
}的前项和为Tn,若n≤6时,Sn=Tn;若n>7时,Sn=2T6-Tn,代入可求
| an |
| 1-2an |
| 1 |
| an+1 |
| 1 |
| an |
(2)由(1)可得
| 1 |
| an |
| 1 |
| an |
|
| 1 |
| an |
解答:(1)证明:∵an≠0,an+1=
∴
=
=
-2
∴
-
=-2,
=11
∴数列{
}是以11为首项,以-2为公差的等差数列等差数列.
(2)解:由(1)可得
=11+(n-1)×(-2)=-2n+13
∴bn=|
|=|13-2n|=
设数列列{
}的前项和为Tn,则由等差数列的求和公式可得,Tn=
×n=12n-n2
若n≤6时,Sn=Tn=12n-n2
若n>7时,Sn=T6+[-(Tn-T6)]=2T6-Tn=n2-12n+72
∴Sn=
| an |
| 1-2an |
∴
| 1 |
| an+1 |
| 1-2an |
| an |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| a1 |
∴数列{
| 1 |
| an |
(2)解:由(1)可得
| 1 |
| an |
∴bn=|
| 1 |
| an |
|
设数列列{
| 1 |
| an |
| 11+13-2n |
| 2 |
若n≤6时,Sn=Tn=12n-n2
若n>7时,Sn=T6+[-(Tn-T6)]=2T6-Tn=n2-12n+72
∴Sn=
|
点评:本题主要考查了利用数列的递推公式构造等差数列求解通项公式,等差数列的求和公式的应用,要注意分类讨论在求解中的应用.
练习册系列答案
相关题目