题目内容

15.已知a>0,x,y满足约束条件$\left\{{\begin{array}{l}{x≥1}\\{x+y-3≤0}\\{y≥a(x-3)}\end{array}}\right.$,若z=2x+y的最小值为$\frac{1}{2}$,则a=$\frac{3}{4}$.

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.

解答 解:作出不等式对应的平面区域,(阴影部分)
由z=2x+y,得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,此时z最小.
即2x+y=$\frac{1}{2}$,
由$\left\{\begin{array}{l}{x=1}\\{2x+y=\frac{1}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=-\frac{3}{2}}\end{array}\right.$,
即C(1,-$\frac{3}{2}$),
∵点A也在直线y=a(x-3)上,
∴-$\frac{3}{2}$=-2a,
解得a=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网