题目内容
15.已知a>0,x,y满足约束条件$\left\{{\begin{array}{l}{x≥1}\\{x+y-3≤0}\\{y≥a(x-3)}\end{array}}\right.$,若z=2x+y的最小值为$\frac{1}{2}$,则a=$\frac{3}{4}$.分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.
解答
解:作出不等式对应的平面区域,(阴影部分)
由z=2x+y,得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,此时z最小.
即2x+y=$\frac{1}{2}$,
由$\left\{\begin{array}{l}{x=1}\\{2x+y=\frac{1}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=-\frac{3}{2}}\end{array}\right.$,
即C(1,-$\frac{3}{2}$),
∵点A也在直线y=a(x-3)上,
∴-$\frac{3}{2}$=-2a,
解得a=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.
点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
6.
如图,平行四边形的顶点A位于双曲线的中心,顶点B位于该双曲线的右焦点,∠ABC为60°,顶点D恰在该双曲线的左支上,若$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,则此双曲线的离心率是( )
| A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}+1}}{2}$ | C. | $\frac{{\sqrt{7}+\sqrt{3}}}{2}$ | D. | $\frac{5}{2}$ |
10.以抛物线y=$\frac{1}{4}$x2的焦点为圆心,且过坐标原点的圆的方程为( )
| A. | x2+y2-x=0 | B. | x2+y2-2x=0 | C. | x2+y2-y=0 | D. | x2+y2-2y=0 |
20.已知i为虚数单位,(2+i)z=1+2i,则z的共轭复数$\overline{z}$=( )
| A. | $\frac{4}{5}$+$\frac{3}{5}$i | B. | $\frac{4}{5}$-$\frac{3}{5}$i | C. | $\frac{4}{3}$+i | D. | $\frac{4}{3}$-i |
4.若(1-2x)9=a0+a1x+a2x2+…+a8x8+a9x9,则a1+a2+…+a8的值为( )
| A. | -1 | B. | -2 | C. | -512 | D. | 510 |
5.
已知集合A={x∈Z||x|≤1},B={x|x2-2x=0},若全集U=R,则图中的阴影部分表示的集合为( )
| A. | {-1} | B. | {2} | C. | {1,2} | D. | {0,2} |