题目内容

(2013•海淀区二模)在△ABC中,∠A=30°,∠B=45°,a=
2
,则b=
2
2
;S△ABC=
3
+1
2
3
+1
2
分析:根据正弦定理
a
sinA
=
b
sinB
的式子,即可解出b=
asinB
sinA
=2;由三角形内角和定理,算出∠C=75°,再由正弦定理的面积公式,可以算出S△ABC的大小.
解答:解:∵△ABC中,∠A=30°,∠B=45°,a=
2

∴由正弦定理
a
sinA
=
b
sinB
,得b=
asinB
sinA
=
2
sin45°
sin30°
=2
∵∠C=180°-∠A-∠B=75°
∴S△ABC=
1
2
absinC=
1
2
×
2
×2×sin75°
=
3
+1
2

故答案为:2,
3
+1
2
点评:本题给出三角形两个角和其中一角的对边,求另一边的大小并求三角形的面积.着重考查了用正弦定理解三角形、三角形面积公式等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网