题目内容

已知函数f(x)=
-x2-ax-5,(x≤1)
a
x
,(x>1)
是R上的增函数,则a的取值范围是(  )
分析:由函数f(x)上R上的增函数可得函数,设g(x)=-x2-ax-5,h(x)=
a
x
,则可知函数g(x)在x≤1时单调递增,函数h(x)在(1,+∞)单调递增,且g(1)≤h(1),从而可求
解答:解:∵函数f(x)=
-x2-ax-5,(x≤1)
a
x
,(x>1)
是R上的增函数
设g(x)=-x2-ax-5(x≤1),h(x)=
a
x
(x>1)
由分段函数的性质可知,函数g(x)=-x2-ax-5在(-∞,1]单调递增,函数h(x)=
a
x
在(1,+∞)单调递增,且g(1)≤h(1)
-
a
2
≥1
a<0
-a-6≤a

a≤-2
a<0
a≥-3

解可得,-3≤a≤-2
故选B
点评:本题主要考查了二次函数的单调性的应用,反比例函数的单调性的应用,主要分段函数的单调性应用 中,不要漏掉g(1)≤h(1)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网