题目内容
(22)已知函数f(x)=(1)若k=e,试确定函数f(x)的单调区间;
(2)若k>0,且对于任意
确定实数k的取值范围;
(3)设函数F(x)=f(x)+f(-x),求证:
。
本小题主要考查函数的单调性、极值、导数、不等式等基本知识,考查运用导数研究函数性质的方法,考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能力。
解:(Ⅰ)由
得
,所以
.
由
得
,故
的单调递增区间是
,
由
得
,故
的单调递减区间是
.
(Ⅱ)由
可知
是偶函数.
于是
对任意
成立等价于
对任意
成立.
由
得
.
①当
时,
.
此时
在
上单调递增.
故
,符合题意.
②当
时,
.
当
变化时
的变化情况如下表:
|
|
|
|
|
|
|
|
| 单调递减 | 极小值 | 单调递增 |
由此可得,在
上,
.
依题意,
,又
.
综合①,②得,实数
的取值范围是
.
(Ⅲ)
,
![]()
![]()
,
![]()
由此得,![]()
故
.
练习册系列答案
相关题目