ÌâÄ¿ÄÚÈÝ
£¨2011•¶«³ÇÇøÄ£Ä⣩¶ÔÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£®¶ÔÕýÕûÊýk£¬¹æ¶¨ {¡÷kan}Ϊ{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖС÷kan=¡÷k-1an+1-¡÷k-1an=¡÷£¨¡÷k-1an£©£®
£¨¢ñ£©ÈôÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒÂú×ã¡÷2an-¡÷an+1+an=-2n£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©¶Ô£¨¢ñ£©ÖеÄÊýÁÐ{an}£¬ÈôÊýÁÐ{bn}ÊǵȲîÊýÁУ¬Ê¹µÃb1Cn1+b2Cn2+b3Cn3+¡+bn-1Cnn-1+bnCnn=an¶ÔÒ»ÇÐÕýÕûÊýn¡ÊN*¶¼³ÉÁ¢£¬Çóbn£»
£¨¢ó£© ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬Áîcn=£¨2n-1£©bn£¬ÉèTn=
+
+
+¡+
£¬ÈôTn£¼m³ÉÁ¢£¬Çó×îСÕýÕûÊýmµÄÖµ£®
£¨¢ñ£©ÈôÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒÂú×ã¡÷2an-¡÷an+1+an=-2n£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©¶Ô£¨¢ñ£©ÖеÄÊýÁÐ{an}£¬ÈôÊýÁÐ{bn}ÊǵȲîÊýÁУ¬Ê¹µÃb1Cn1+b2Cn2+b3Cn3+¡+bn-1Cnn-1+bnCnn=an¶ÔÒ»ÇÐÕýÕûÊýn¡ÊN*¶¼³ÉÁ¢£¬Çóbn£»
£¨¢ó£© ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬Áîcn=£¨2n-1£©bn£¬ÉèTn=
| c1 |
| a1 |
| c2 |
| a2 |
| c3 |
| a3 |
| cn |
| an |
·ÖÎö£º£¨¢ñ£©ÓÉ¡÷2an-¡÷an+1+an=-2n¼°¡÷2an=¡÷an+1-¡÷an£¬¿ÉµÃ¡÷an-an=2n£¬¼´¿ÉµÃan+1-2an=2n£¬¹¹Ôì¿ÉµÃ
-
=
£¬½áºÏµÈ²îÊýÁеÄͨÏî¿ÉÇó
£¬½ø¶ø¿ÉÇó
£¨¢ò£©ÓÉb1Cn1+b2Cn2+b3Cn3+¡+bn-1Cnn-1+bnCnn=an£¬¿ÉµÃb1Cn1+b2Cn2+b3Cn3+¡+bn-1Cnn-1+bnCnn=n•2n-1£®ÓÉ×éºÏÊýµÄÐÔÖÊkCnk=nCn-1k-1£¬¿ÉÖªCn1+2Cn2+¡+nCnn=n£¨Cn-10+¡+Cn-1n-1£©£¬´Ó¶ø¿ÉÇóbn
£¨¢ó£©ÓÉ£¨¢ò£©µÃ Tn=
+
+
+¡+
£¬ÀûÓôíλÏà¼õ¿ÉÇóTn=6-
-
£¼6ÓÖTn=
+
+
+¡+
£¬£¬ÀûÓõ¥µ÷ÐԵ͍Òå¿ÉÖªTn+1-Tn£¾0£¬{Tn}ÊǵÝÔöÊýÁУ¬ÇÒT6=6-
-
£¾5£¬´Ó¶ø¿ÉÇóm
| an+1 |
| 2n+1 |
| an |
| 2n |
| 1 |
| 2 |
| an |
| 2n |
£¨¢ò£©ÓÉb1Cn1+b2Cn2+b3Cn3+¡+bn-1Cnn-1+bnCnn=an£¬¿ÉµÃb1Cn1+b2Cn2+b3Cn3+¡+bn-1Cnn-1+bnCnn=n•2n-1£®ÓÉ×éºÏÊýµÄÐÔÖÊkCnk=nCn-1k-1£¬¿ÉÖªCn1+2Cn2+¡+nCnn=n£¨Cn-10+¡+Cn-1n-1£©£¬´Ó¶ø¿ÉÇóbn
£¨¢ó£©ÓÉ£¨¢ò£©µÃ Tn=
| 1 |
| 1 |
| 3 |
| 2 |
| 5 |
| 22 |
| 2n-1 |
| 2n-1 |
| 1 |
| 2n-3 |
| 2n-1 |
| 2n-1 |
| 1 |
| 1 |
| 3 |
| 2 |
| 5 |
| 22 |
| 2n-1 |
| 2n-1 |
| 1 |
| 23 |
| 11 |
| 25 |
½â´ð£º½â£º£¨¢ñ£©ÓÉ¡÷2an-¡÷an+1+an=-2n¼°¡÷2an=¡÷an+1-¡÷an£¬
µÃ¡÷an-an=2n£¬
¡àan+1-2an=2n£¬
¡à
-
=
£¬---------------£¨2·Ö£©
¡àÊýÁÐ{
}ÊÇÊ×ÏîΪ
£¬¹«²îΪ
µÄµÈ²îÊýÁУ¬
¡à
=
+(n-1)¡Á
£¬
¡àan=n•2n-1£®--------£¨4·Ö£©
£¨¢ò£©¡ßb1Cn1+b2Cn2+b3Cn3+¡+bn-1Cnn-1+bnCnn=an£¬
¡àb1Cn1+b2Cn2+b3Cn3+¡+bn-1Cnn-1+bnCnn=n•2n-1£®
¡ßkCnk=nCn-1k-1£¬
¡àbn=n£®------------£¨9·Ö£©
£¨¢ó£©ÓÉ£¨¢ò£©µÃ
Tn=
+
+
+¡+
£¬¢Ù
Tn=
+
+
+¡+
£¬¢Ú
¢Ù-¢ÚµÃ
Tn=1+1+
+
+
+¡+
-
=3-
-
£¬
¡àTn=6-
-
£¼6£¬----------£¨10·Ö£©
ÓÖTn=
+
+
+¡+
£¬
¡àTn+1-Tn£¾0£¬
¡à{Tn}ÊǵÝÔöÊýÁУ¬ÇÒT6=6-
-
£¾5£¬
¡àÂú×ãÌõ¼þµÄ×îСÕýÕûÊýmµÄֵΪ6£®--------£¨13·Ö£©
µÃ¡÷an-an=2n£¬
¡àan+1-2an=2n£¬
¡à
| an+1 |
| 2n+1 |
| an |
| 2n |
| 1 |
| 2 |
¡àÊýÁÐ{
| an |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
¡à
| an |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
¡àan=n•2n-1£®--------£¨4·Ö£©
£¨¢ò£©¡ßb1Cn1+b2Cn2+b3Cn3+¡+bn-1Cnn-1+bnCnn=an£¬
¡àb1Cn1+b2Cn2+b3Cn3+¡+bn-1Cnn-1+bnCnn=n•2n-1£®
¡ßkCnk=nCn-1k-1£¬
|
¡àbn=n£®------------£¨9·Ö£©
£¨¢ó£©ÓÉ£¨¢ò£©µÃ
Tn=
| 1 |
| 1 |
| 3 |
| 2 |
| 5 |
| 22 |
| 2n-1 |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-1 |
| 2n |
¢Ù-¢ÚµÃ
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-2 |
| 2n-1 |
| 2n |
| 1 |
| 2n-2 |
| 2n-1 |
| 2n |
¡àTn=6-
| 1 |
| 2n-3 |
| 2n-1 |
| 2n-1 |
ÓÖTn=
| 1 |
| 1 |
| 3 |
| 2 |
| 5 |
| 22 |
| 2n-1 |
| 2n-1 |
¡àTn+1-Tn£¾0£¬
¡à{Tn}ÊǵÝÔöÊýÁУ¬ÇÒT6=6-
| 1 |
| 23 |
| 11 |
| 25 |
¡àÂú×ãÌõ¼þµÄ×îСÕýÕûÊýmµÄֵΪ6£®--------£¨13·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÓÉж¨Òå¹¹ÔìµÈ²îÊýÁÐÇó½âÊýÁеÄͨÏʽ£¬¶þÏîʽϵÊýµÄÐÔÖÊÓ¦Óã¬ÊýÁÐÇóºÍµÄ´íλÏà¼õµÄÓ¦Ó㬼°ÊýÁе¥µ÷ÐÔµÄÓ¦Óã¬ÊôÓÚ×ÛºÏÐÔÊÔÌâ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿