题目内容
已知数列{an}满足:a1=1,an+1•an=n,n∈N*.
(1)求a2,a3,a4的值,并证明:an+2=
+an;
(2)证明:2
-1≤
+
+…+
<3
-1.
(1)求a2,a3,a4的值,并证明:an+2=
| 1 |
| an+1 |
(2)证明:2
| n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| n |
分析:(1)由已知令n=2,3,4代入即可求得a2,a3,a4的值,对
+an通分再用已知即可证明;
(2)先证2
-1≤
+
+…+
,由(1)知
=an+1-an-1,
=an-an-2,…,
=a4-a2,
=a3-a1,
=1,将各式相加再用基本不等式即可证明;再证
+
+…+
<3
-1,先证
≤an≤
(n≥2,n∈N*),用数学归纳法即可证明,n=1时单独检验即可,综上即可得到结论;
| 1 |
| an+1 |
(2)先证2
| n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| a3 |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| n |
3-
| ||
| 2 |
| n |
3+
| ||
| 2 |
| n-1 |
解答:解:(1)由题意得a2=
=1,a3=
=2,a4=
=
,下面证明:an+2=
+an,
+an=
=
=an+2;
证明:(2)先证2
-1≤
+
+…+
,
由(1)知
=an+1-an-1,
=an-an-2,…,
=a4-a2,
=a3-a1,
=1,
将以上式子相加得:
+
+…+
=an+1+an-a2-a1+1=an+1+an-1≥2
-1=2
-1;
为证
+
+…+
<3
-1,先证
≤an≤
(n≥2,n∈N*),
用数学归纳法:
①当n=2时,a2=1,结论显然成立;
②假设n=k时,
≤ak≤
成立,
则当n=k+1时,由ak+1ak=k⇒ak=
,
由归纳假设有
≤ak≤
⇒
•
≤ak+1≤
,
因为
≥
,所以
≤ak+1≤
也成立,
综上,
≤an≤
<
(n≥2,n∈N*),
所以,当n≥2时,
+
+…+
=an+1+an-1=
+an-1<
+
-1=3
-1,
又n=1时,显然有
+
+…+
<3
-1成立,
综上所述,2
-1≤
+
+…+
<3
-1.
| 1 |
| a1 |
| 2 |
| a2 |
| 3 |
| a3 |
| 3 |
| 2 |
| 1 |
| an+1 |
| 1 |
| an+1 |
| 1+anan+1 |
| an+1 |
| n+1 |
| an+1 |
证明:(2)先证2
| n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
由(1)知
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| a3 |
| 1 |
| a2 |
| 1 |
| a1 |
将以上式子相加得:
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| an+1an |
| n |
为证
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| n |
3-
| ||
| 2 |
| n |
3+
| ||
| 2 |
| n-1 |
用数学归纳法:
①当n=2时,a2=1,结论显然成立;
②假设n=k时,
3-
| ||
| 2 |
| k |
3+
| ||
| 2 |
| k-1 |
则当n=k+1时,由ak+1ak=k⇒ak=
| k |
| ak+1 |
由归纳假设有
3-
| ||
| 2 |
| k |
3+
| ||
| 2 |
| k-1 |
3-
| ||
| 2 |
| k | ||
|
3+
| ||
| 2 |
| k |
因为
| k | ||
|
| k+1 |
3-
| ||
| 2 |
| k+1 |
3+
| ||
| 2 |
| k |
综上,
3-
| ||
| 2 |
| n |
3+
| ||
| 2 |
| n-1 |
3+
| ||
| 2 |
| n |
所以,当n≥2时,
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| n |
| an |
| n | ||||||
|
3+
| ||
| 2 |
| n |
| n |
又n=1时,显然有
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| n |
综上所述,2
| n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| n |
点评:本题考查数列与不等式的综合,考查递推式的应用,考查学生分析问题解决问题的能力,本题综合性强,难度大,能力要求高.
练习册系列答案
相关题目