题目内容
定义在R上的函数f(x)满足:①是偶函数;②对任意的x1、x2都有f(
)≤
[f(x1)+f(x2)].请写出这样的一个函数f(x)=______.
| x1+x2 |
| 2 |
| 1 |
| 2 |
由于定义在R上的函数f(x)对任意的x1、x2都有f(
)≤
[f(x1)+f(x2)],故函数为凸函数,
又由函数为偶函数,故满足条件的一个函数为f(x)=x2+b
故答案为 x2+b
| x1+x2 |
| 2 |
| 1 |
| 2 |
又由函数为偶函数,故满足条件的一个函数为f(x)=x2+b
故答案为 x2+b
练习册系列答案
相关题目