题目内容
设函数f(x)满足f(x+y)=f(x)+f(y)+xy(x+y),又f'(0)=1,则函数f(x)的解析式为________.
分析:可令y=1可得f(x+1)-f(x)=f(1)+x2+x然后分别赋予x为1,2,3…,(x-1)将这(x-1)个式子相加再结合12+22+…+(x-1)2=
解答:∵f(x+y)=f(x)+f(y)+xy(x+y)
∴令y=1则f(x+1)-f(x)=f(1)+x2+x
∴f(2)-f(1)=f(1)+12+1
f(3)-f(2)=f(1)+22+2
…
f(x)-f(x-1)=f(1)+(x-1)2+(x-1)
∴将上面(x-1)个式子相加可得f(x)-f(1)=(x-1)f(1)+[12+22+…+(x-1)2]+(1+2+3+…+(x-1))
∴f(x)=xf(1)+
∴f′(x)=f(1)+
∵f'(0)=1
∴f(1)-
∴f(1)=
∴f(x)=
故答案为f(x)=
点评:本题主要考查了函数解析式的求解,由于用到了利用递推公式和叠加法以及12+22+…+(x-1)2=
练习册系列答案
相关题目
已知定义在R上的函数f(x)满足:对任意x∈R,都有f(x)=f(2-x)成立,且当x∈(-∞,1)时,(x-1)f′(x)<0(其中f'(x)为f(x)的导数).设a=f(0),b=f(
),c=f(3),则a、b、c三者的大小关系是( )
| 1 |
| 2 |
| A、a<b<c |
| B、c<a<b |
| C、c<b<a |
| D、b<c<a |
设函数f(x)满足f(n+1)=
(n∈N*),且f(1)=2,则f(20)为( )
| 2f(n)+n |
| 2 |
| A、95 | B、97 |
| C、105 | D、192 |