题目内容
已知函数f(x)=-
sin2x+sinxcosx
(I)求函数f(x)的最小正周期;
(II)求函数f(x)在x∈[0,
]的值域.
| 3 |
(I)求函数f(x)的最小正周期;
(II)求函数f(x)在x∈[0,
| π |
| 2 |
分析:把f(x)的解析式中的第一项利用二倍角的余弦函数公式化简,第二项利用二倍角的正弦函数公式化简,然后再利用两角和的正弦函数公式化为一个角的正弦函数,
(I)找出正弦函数中的λ,根据周期公式T=
即可求出最小正周期;
(II)由x的范围,求出这个角的范围,然后根据正弦函数的图象与性质得到正弦函数的值域,即可得到f(x)的值域.
(I)找出正弦函数中的λ,根据周期公式T=
| 2π |
| λ |
(II)由x的范围,求出这个角的范围,然后根据正弦函数的图象与性质得到正弦函数的值域,即可得到f(x)的值域.
解答:解:f(x)=-
sin2x+sinxcosx
=-
×
+
sin2x
=
sin2x+
cos2x-
=sin(2x+
)-
,
(I)T=
=π
(II)∴0≤x≤
,
∴
≤2x+
≤
,
∴-
≤sin(2x+
)≤1,
所以f(x)的值域为:[-
,
]
| 3 |
=-
| 3 |
| 1-cos2x |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
=sin(2x+
| π |
| 3 |
| ||
| 2 |
(I)T=
| 2π |
| 2 |
(II)∴0≤x≤
| π |
| 2 |
∴
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
∴-
| ||
| 2 |
| π |
| 3 |
所以f(x)的值域为:[-
| 3 |
2-
| ||
| 2 |
点评:此题考查了正弦函数的图象与性质,三角函数的周期性及其求法,以及正弦函数的值域.根据三角函数的恒等变形把f(x)的解析式化为一个角的正弦函数是解本题的关键.
练习册系列答案
相关题目
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|