题目内容
分析:上下二部分体积高相等,体积之比为为两个四边形面积之比,设二梯形高为h1,
=
=
,由此能求出AA0:A0A1.
| V上 |
| V下 |
| S四边形ABBOAO |
| S四边形BOB1A1AO |
| (AAO+BBO)h1 |
| 2 |
解答:解:上下二部分体积高相等,体积之比为为两个四边形面积之比,
设二梯形高为h1,
=
=
,
AAO+BBO=AOA1+BOB1,设侧棱长为a,
=k,AA1=a,AAO=ak,AOA1=a(1-k),
BBO=
,BOB1=
,
=a(1-k)-ak,k=
,
=
,
=
.
故选A.
设二梯形高为h1,
| V上 |
| V下 |
| S四边形ABBOAO |
| S四边形BOB1A1AO |
| (AAO+BBO)h1 |
| 2 |
AAO+BBO=AOA1+BOB1,设侧棱长为a,
| AAO |
| AA1 |
BBO=
| 3a |
| 5 |
| 2a |
| 5 |
| a |
| 5 |
| 2 |
| 5 |
| AAO |
| AA1 |
| 2 |
| 5 |
| AAO |
| AOA1 |
| 2 |
| 3 |
故选A.
点评:本题考查棱柱的结构特征,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目