题目内容
已知函数f(x)=sinx+cosx,F(x)=f'(x)[f(x)+f'(x)]-1,f'(x)是f(x)的导函数.
(I)若tanx=
,求F(x)的值;
(Ⅱ)求F(x)的单调减区间.
(I)若tanx=
| 1 | 3 |
(Ⅱ)求F(x)的单调减区间.
分析:(I)可求得f'(x)=cosx-sinx,于是,可求得F(x)=
cos(2x+
),再由tanx=
可求得cos2x,sin2x利用两角和的余弦即可求得F(x)的值;
(Ⅱ)由于F(x)=
cos(2x+
),利用余弦函数的单调性即可求得F(x)的单调减区间.
| 2 |
| π |
| 4 |
| 1 |
| 3 |
(Ⅱ)由于F(x)=
| 2 |
| π |
| 4 |
解答:解:∵f(x)=sinx+cosx,
∴f'(x)=cosx-sinx,
∴F(x)=f'(x)[f(x)+f'(x)]-1
=(cosx-sinx)(sinx+cosx+cosx-sinx)-1
=2cos2x-sin2x-1
=1+cos2x-sin2x-1
=
cos(2x+
),
∵tanx=
,
∴cos2x=cos2x-sin2x=
=
=
,
同理可求sin2x=
=
,
∴F(x)=
cos(2x+
)=
(cos2xcos
-sin2xsin
)=
.
(Ⅱ)∵F(x)=
cos(2x+
),
∴由2kπ≤2x+
≤2kπ+π得:kπ-
≤x≤kπ+
(k∈Z),
即:x∈[kπ-
,kπ+
](k∈Z),
此即F(x)的单调减区间.
∴f'(x)=cosx-sinx,
∴F(x)=f'(x)[f(x)+f'(x)]-1
=(cosx-sinx)(sinx+cosx+cosx-sinx)-1
=2cos2x-sin2x-1
=1+cos2x-sin2x-1
=
| 2 |
| π |
| 4 |
∵tanx=
| 1 |
| 3 |
∴cos2x=cos2x-sin2x=
| cos2x-sin2x |
| cos2x+sin2x |
| 1-tan2x |
| 1+tan2x |
| 4 |
| 5 |
同理可求sin2x=
| 2tanx |
| 1+tan2x |
| 3 |
| 5 |
∴F(x)=
| 2 |
| π |
| 4 |
| 2 |
| π |
| 4 |
| π |
| 4 |
| 1 |
| 5 |
(Ⅱ)∵F(x)=
| 2 |
| π |
| 4 |
∴由2kπ≤2x+
| π |
| 4 |
| π |
| 8 |
| 3π |
| 8 |
即:x∈[kπ-
| π |
| 8 |
| 3π |
| 8 |
此即F(x)的单调减区间.
点评:本题考查利用导数研究函数的单调性,求得F(x)=
cos(2x+
)是解题的关键,突出考查同角三角函数间的基本关系的灵活应用,属于中档题.
| 2 |
| π |
| 4 |
练习册系列答案
相关题目