搜索
题目内容
已知f(x)=1+x
2
+log
2
x,则f
-1
(6)=______.
试题答案
相关练习册答案
令f(x)=6得:
1+x
2
+log
2
x=6,
∴x=2,
根据互为反函数的两个函数值的关系得:
f
-1
(6)=2,
故答案为:2.
练习册系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
萌齐小升初强化模拟训练系列答案
相关题目
21、例4.已知f(x)=ax
2
+bx+c,g(x)=ax+b(a、b、c∈R),当x∈[-1,1]时,|f(x)|≤1
(1)证明:|c|≤1.
(2)x∈[-1,1]时,证明|g(x)|≤2.
(3)设a>0,当-1≤x≤1时,g(x)
max
=2,求f(x).
已知f
1
(x)=|
3
x
-1|,
f
2
(x)=|a•
3
x
-9|(a>0),x∈R
,且f(x)=
f
1
(x),
f
1
(x)≤
f
2
(x)
f
2
(x),
f
1
(x)>
f
2
(x)
(1)当a=1时,求f(x)的解析式;
(2)在(1)的条件下,若方程f(x)-m=0有4个不等的实根,求实数m的范围;
(3)当2≤a<9时,设f(x)=f
2
(x)所对应的自变量取值区间的长度为l(闭区间[m,n]的长度定义为n-m),试求l的最大值.
已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x
2
-kx
3
.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若
,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间
上的值域为
,若存在,求出a的值;若不存在,请说明理由.
例4.已知f(x)=ax
2
+bx+c,g(x)=ax+b(a、b、c∈R),当x∈[-1,1]时,|f(x)|≤1
(1)证明:|c|≤1.
(2)x∈[-1,1]时,证明|g(x)|≤2.
(3)设a>0,当-1≤x≤1时,g(x)
max
=2,求f(x).
已知f(x)是定义在R上的奇函数,且f(1)=0,f′(x)是f(x)的导函数,当x>0时总有xf′(x)<f(x)成立,则不等式f(x)>0的解集为( )
A.{x|x<-1或x>1}
B.{x|x<-1或0<x<1}
C.{x|-1<x<0或0<x<1}
D.{x|-1<x<1,且x≠0}
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案