题目内容

sinα+cosα
sinα-cosα
=2,则
sin2α-cos2α-1
sinαcosα
=(  )
分析:已知等式左边分子分母除以cosα,利用同角三角函数间的基本关系化简求出tanα的值,所求式子利用同角三角函数间的基本关系化简后,把tanα的值代入计算即可求出值.
解答:解:∵
sinα+cosα
sinα-cosα
=
tanα+1
tanα-1
=2,
∴tanα+1=2tanα-2,即tanα=3,
则原式=
sin2α-cos2α-sin2α-cos2α
sinαcosα
=
-2cos2α
sinαcosα
=-
2cosα
sinα
=-
2
tanα
=-
2
3

故选B
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网