题目内容
等比数列{an}的各项均为正数,且a1+6a2=1,a22=9a1•a5,.
(I )求数列{an}的通项公式;
(Ⅱ)设a1•a2•a3…an=3
,求数列{bn}的前n项和.
(I )求数列{an}的通项公式;
(Ⅱ)设a1•a2•a3…an=3
| 1 |
| bn |
(Ⅰ)设{an}的公比为q,则q>0,
由已知有
可解得q=
(q=-
舍去),a1=
.
∴an=
•(
)n-1=(
)n. …(6分)
(Ⅱ)∵3
=
•(
)2•(
)3…(
)n
=(
)1+2+3+…+n=(
)
=3
∴
=-
,
即bn=-
=-2(
-
).…(9分)
∴Sn=b1+b2+…+bn
=-2(1-
+
-
+…+
-
)
=-2(1-
)=-
. …(12分)
由已知有
|
可解得q=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴an=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(Ⅱ)∵3
| 1 |
| bn |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=(
| 1 |
| 3 |
| 1 |
| 3 |
| 2(n+1) |
| 2 |
=3
| -n(n+1) |
| 2 |
∴
| 1 |
| bn |
| n(n+1) |
| 2 |
即bn=-
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| 1+n |
∴Sn=b1+b2+…+bn
=-2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| 1+n |
=-2(1-
| 1 |
| 1+n |
| 2n |
| n+1 |
练习册系列答案
相关题目