题目内容
已知数列{an}的通项公式an=-2n+11,前n项和sn.如果bn=|an|(n∈N),求数列{bn}的前n项和Tn.
解:∵an+1-an=-2
∴数列{an}成等差数列(2 分)
当n≤5时,an>0(3分)
当n≥6时,an<0,(4 分)
∴当n≤5时,Tn=
(8分)
当n≥6时,
(12分)
∴
(13 分)
分析:由已知可求出数列bn的通项公式及前n项和,然后判断从数列的项什么时候为正,什么时候为负,对n分段讨论,再利用等差数列的前n项和公式求出和.
点评:求数列的前n项和问题,关键是判断出数列通项的特点,然后选择合适的求和方法;求数列的通项,先判断出递推关系的特点,然后选择合适的求通项方法.
∴数列{an}成等差数列(2 分)
当n≤5时,an>0(3分)
当n≥6时,an<0,(4 分)
∴当n≤5时,Tn=
当n≥6时,
∴
分析:由已知可求出数列bn的通项公式及前n项和,然后判断从数列的项什么时候为正,什么时候为负,对n分段讨论,再利用等差数列的前n项和公式求出和.
点评:求数列的前n项和问题,关键是判断出数列通项的特点,然后选择合适的求和方法;求数列的通项,先判断出递推关系的特点,然后选择合适的求通项方法.
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|