题目内容

已知函数f(x)=
lnx
x
,则下列命题正确的是(  )
分析:借助于导数求出函数的单调区间,进而得到函数的极值点也是最值点,再逐个验证后即可得正确答案.
解答:解:由于函数f(x)=
lnx
x
,则f′(x)=
1-lnx
x2
(x>0)
f (x)=0,则1-lnx=0,解得x=e,
当0<x<e时,f (x)>0即函数f(x)=
lnx
x
在区间(0,e)上为增函数,
当x>e时,f (x)<0即函数f(x)=
lnx
x
在区间(e,+∞)上为减函数.
则函数在x=e时取得最大值,此时f(x)=f(e)=
1
e
,故C正确
故答案为C.
点评:本题主要考查利用导数来研究函数的性质,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网