题目内容

(文)已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),记an=3f(n),n∈N+
(1)求数列{an}的通项公式;
(2求使不等式(1+
1
a1
) (1+
1
a2
) …(1+
1
an
)
≥p
2n+1
对一切n∈N*均成立的最大实数p.
分析:(1)由题意得
log3(2a+b)=1
log3(5a+b)=2
,解得
a=2
b=-1
,由此能求出数列{an}的通项公式.
(2)由题意得p≤
1
2n+1
(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)
对n∈N*恒成立,记F(n)=
1
2n+1
(1+
1
a1
)(1+
1
a2
)…
(1+
1
an
),则
F(n+1)
F(n)
=
2(n+1)
4(n+1)2-1
2(n+1)
2(n+1)
=1,由此能求出最大实数p.
解答:(文)解:(1)由题意得
log3(2a+b)=1
log3(5a+b)=2

解得
a=2
b=-1

∴f(x)=log3(2x-1),
an=3log3(2n-1)=2n-1,n∈N*
(2)由题意得p≤
1
2n+1
(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)
对n∈N*恒成立,
F(n)=
1
2n+1
(1+
1
a1
)(1+
1
a2
)…
(1+
1
an
),
F(n+1)
F(n)
=
1
2n+3
(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)(1+
1
an+1
)
1
2n+1
(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)

=
2n+2
(2n+1)(2n+3)

=
2(n+1)
4(n+1)2-1

2(n+1)
2(n+1)
=1,
∵F(n)>0,
∴F(n+1)>F(n),
即F(n)是随n的增大而增大,
F(n)的最小值为F(1)=
2
3
3

p≤
2
3
3
,即pmax=
2
3
3
点评:本题考查数列的通项公式和求使不等式(1+
1
a1
) (1+
1
a2
) …(1+
1
an
)
≥p
2n+1
对一切n∈N*均成立的最大实数p.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网