题目内容
(文)已知函数f(x)=log3(ax+b)的图象经过点A(2,1)和B(5,2),记an=3f(n),n∈N+
(1)求数列{an}的通项公式;
(2求使不等式(1+
) (1+
) …(1+
)≥p
对一切n∈N*均成立的最大实数p.
(1)求数列{an}的通项公式;
(2求使不等式(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 2n+1 |
分析:(1)由题意得
,解得
,由此能求出数列{an}的通项公式.
(2)由题意得p≤
(1+
)(1+
)…(1+
)对n∈N*恒成立,记F(n)=
(1+
)(1+
)…(1+
),则
=
>
=1,由此能求出最大实数p.
|
|
(2)由题意得p≤
| 1 | ||
|
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 | ||
|
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| F(n+1) |
| F(n) |
| 2(n+1) | ||
|
| 2(n+1) |
| 2(n+1) |
解答:(文)解:(1)由题意得
,
解得
,
∴f(x)=log3(2x-1),
an=3log3(2n-1)=2n-1,n∈N*.
(2)由题意得p≤
(1+
)(1+
)…(1+
)对n∈N*恒成立,
记F(n)=
(1+
)(1+
)…(1+
),
则
=
=
=
>
=1,
∵F(n)>0,
∴F(n+1)>F(n),
即F(n)是随n的增大而增大,
F(n)的最小值为F(1)=
,
∴p≤
,即pmax=
.
|
解得
|
∴f(x)=log3(2x-1),
an=3log3(2n-1)=2n-1,n∈N*.
(2)由题意得p≤
| 1 | ||
|
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
记F(n)=
| 1 | ||
|
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
则
| F(n+1) |
| F(n) |
| ||||||||||||
|
=
| 2n+2 | ||
|
=
| 2(n+1) | ||
|
>
| 2(n+1) |
| 2(n+1) |
∵F(n)>0,
∴F(n+1)>F(n),
即F(n)是随n的增大而增大,
F(n)的最小值为F(1)=
| 2 |
| 3 |
| 3 |
∴p≤
| 2 |
| 3 |
| 3 |
| 2 |
| 3 |
| 3 |
点评:本题考查数列的通项公式和求使不等式(1+
) (1+
) …(1+
)≥p
对一切n∈N*均成立的最大实数p.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答.
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 2n+1 |
练习册系列答案
相关题目