题目内容

已知f(x)=ax3-3x+1对于x∈[-1,1]总有f(x)≥0 成立,则a=(  )
A.a≥2B.a≤4C.a≥4D.a=4
若x=0,则不论a取何值,f(x)≥0都成立;
当x>0即x∈(0,1]时,f(x)=ax3-3x+1≥0可化为:a≥
3
x2
-
1
x3

设g(x)=
3
x2
-
1
x3
,则g′(x)=
3(1-2x)
x4

所以g(x)在区间(0,
1
2
]上单调递增,在区间[
1
2
,1]上单调递减,
因此g(x)max=g(
1
2
)=4,从而a≥4;
当x<0即x∈[-1,0)时,f(x)=ax3-3x+1≥0可化为:a≤
3
x2
-
1
x3

g(x)=
3
x2
-
1
x3
在区间[-1,0)上单调递增,
因此g(x)min=g(-1)=4,从而a≤4,综上a=4.
故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网