题目内容
(2010•江门二模)已知数列{an}满足:a1=λ,an+1=
an+n-2,其中λ∈R是常数,n∈N*.
(1)若λ=-3,求a2、a3;
(2)对?λ∈R,求数列{an}的前n项和Sn;
(3)若λ+12>0,讨论{Sn}的最小项.
| 2 | 3 |
(1)若λ=-3,求a2、a3;
(2)对?λ∈R,求数列{an}的前n项和Sn;
(3)若λ+12>0,讨论{Sn}的最小项.
分析:(1)由题意可得a1=-3,把n=2,n=3分别代入递推公式可求a2,a3
(2)利用待定系数法构造数列bn=an-3n+15为等比数列,可先求数列bn的前n项和,然后利用分组求和求数列{an}的前项和sn
(3)结合(2)可先求an=(
)n-1[(λ+12)]+(
)n-1(3n-15)],观察可得当n≥5时,an>0,通过计算a1=λ,a2=
(λ-
), a3=
(λ-
) , a4=
(λ+
),从而对①λ>
②λ=
③
<λ<
④λ=-
分别进行判断数列单调性,从而求和的最小值.
(2)利用待定系数法构造数列bn=an-3n+15为等比数列,可先求数列bn的前n项和,然后利用分组求和求数列{an}的前项和sn
(3)结合(2)可先求an=(
| 2 |
| 3 |
| 3 |
| 2 |
| 2 |
| 3 |
| 3 |
| 2 |
| 4 |
| 9 |
| 3 |
| 2 |
| 8 |
| 27 |
| 15 |
| 8 |
| 3 |
| 2 |
| 3 |
| 2 |
| -15 |
| 8 |
| 3 |
| 2 |
| 15 |
| 8 |
解答:解:(1)a1=-3,a2=
a1+(1-2)=-3,a3=
a2+(2-2)=-2.
(2)设bn=an+αn+β,α、β∈R是常数,代入得bn+1-α(n+1)-β=
(bn-αn-β)+n-2,
解
,
得
,即bn=an-3n+15,bn+1=
bn.
若λ≠-12,则{bn}是首项为b1=λ+12≠0、公比为q=
的等比数列,
所以{bn}的前n项和Tn=
=3(λ+12)[1-(
)n]
数列{3n-15}的前n项和为
×n=
,所以Sn=3(λ+12)[1-(
)n]+
.
若λ=-12,则bn=0,an=3n-15,Sn=
9.
综上所述,?λ∈R,Sn=3(λ+12)[1-(
)n]+
.
(3)an=(λ+12)(
)n-1+3n-15=(
)n-1[(λ+12)+(
)n-1(3n-15)],
a1=λ,a2=
(λ-
),a3=
(λ-
),a4=
(λ+
),
当n≥5时an>0,
所以,当λ>
时,?n∈N*有an>0,{Sn}的最小项是S1;
当λ=
时,{Sn}的最小项是S1、S2和S3;
当-
<λ<
时,{Sn}的最小项是S3;
当λ=-
时,{Sn}的最小项是S3和S4;当-12<λ<-
时,{Sn}的最小项是S4.
| 2 |
| 3 |
| 2 |
| 3 |
(2)设bn=an+αn+β,α、β∈R是常数,代入得bn+1-α(n+1)-β=
| 2 |
| 3 |
解
|
得
|
| 2 |
| 3 |
若λ≠-12,则{bn}是首项为b1=λ+12≠0、公比为q=
| 2 |
| 3 |
所以{bn}的前n项和Tn=
| b1(1-qn) |
| 1-q |
| 2 |
| 3 |
数列{3n-15}的前n项和为
| (3n-15)+(3-15) |
| 2 |
| n(3n-27) |
| 2 |
| 2 |
| 3 |
| n(3n-27) |
| 2 |
若λ=-12,则bn=0,an=3n-15,Sn=
| n(3n-27) |
| 2 |
综上所述,?λ∈R,Sn=3(λ+12)[1-(
| 2 |
| 3 |
| n(3n-27) |
| 2 |
(3)an=(λ+12)(
| 2 |
| 3 |
| 2 |
| 3 |
| 3 |
| 2 |
a1=λ,a2=
| 2 |
| 3 |
| 3 |
| 2 |
| 4 |
| 9 |
| 3 |
| 2 |
| 8 |
| 27 |
| 15 |
| 8 |
当n≥5时an>0,
所以,当λ>
| 3 |
| 2 |
当λ=
| 3 |
| 2 |
当-
| 15 |
| 8 |
| 3 |
| 2 |
当λ=-
| 15 |
| 8 |
| 15 |
| 8 |
点评:本题主要考查了利用构造求数列的通项及求和,结合数列的单调性求数列的最值问题,需要考生具备一定的逻辑推理与运算的能力.
练习册系列答案
相关题目