题目内容
已知正项数列{bn}满足b1=1,
-bn+1bn-2
=bn+1+bn.若数列{an}满足a1=1,an=bn(
+
+…+
)(n≥2且n∈N*)
(1)求数列{bn}的通项公式bn;
(2)证明:an>3•2n-1-2(n≥4,n∈N*);
(3)求证:(1+
)•(1+
)•…•(1+
)<
(n∈N*).
| b | 2 n+1 |
| b | 2 n |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
(1)求数列{bn}的通项公式bn;
(2)证明:an>3•2n-1-2(n≥4,n∈N*);
(3)求证:(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 10 |
| 3 |
分析:(1)根据
-bn+1bn-2
=bn+1+bn,化简可得{bn+1}为首项为2,公比为2的等比数列,由此可求数列{bn}的通项公式bn;
(2)an=bn(
+
+…+
)可化为
=
+
+…+
(n≥2),再写一式,两式相减可得an+1>2an+2,由此可得结论;
(3)由(2)知(1+
)•(1+
)•…•(1+
)=
×
×…×
=2(
+
+…+
),根据
+
+…+
=1+
+…+
,利用放缩法,即可证得结论.
| b | 2 n+1 |
| b | 2 n |
(2)an=bn(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| an |
| bn |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
(3)由(2)知(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| a1+1 |
| a1 |
| a2+1 |
| a2 |
| an+1 |
| an |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 |
| 3 |
| 1 |
| 2n-1 |
解答:(1)解:∵
-bn+1bn-2
=bn+1+bn
∴(bn+1-2bn)(bn+1+bn)=bn+1+bn
∵bn>0
∴bn+1=2bn+1,
∴bn+1+1=2(bn+1),
∴{bn+1}为首项为2,公比为2的等比数列
∴bn+1=2•2n-1=2n,
∴bn=2n-1;
(2)证明:∵an=bn(
+
+…+
)
∴
=
+
+…+
(n≥2)①
∴
=
+
+…+
+
②
②-①可得
=
∴
=
=
<
∴an+1>2an+2(n≥2),n=1时也成立
∴an+1>2an+2>…>2na1+2n+…+22+2=3•2n-2
∴an>3•2n-1-2
(3)由(2)知(1+
)•(1+
)•…•(1+
)=
×
×…×
=
×
×…×
×an+1
=
×
×…×
×an+1=
×
×an+1=2(
+
+…+
)
∵
+
+…+
=1+
+…+
,
当k≥2时,
<2(
-
)
∴1+
+…+
<1+2[(
-
)+…+(
-
)
=1+2(
-
)<
∴原不等式成立.
| b | 2 n+1 |
| b | 2 n |
∴(bn+1-2bn)(bn+1+bn)=bn+1+bn
∵bn>0
∴bn+1=2bn+1,
∴bn+1+1=2(bn+1),
∴{bn+1}为首项为2,公比为2的等比数列
∴bn+1=2•2n-1=2n,
∴bn=2n-1;
(2)证明:∵an=bn(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
∴
| an |
| bn |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
∴
| an+1 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
②-①可得
| an+1 |
| bn+1 |
| an+1 |
| bn |
∴
| an+1 |
| an+1 |
| bn |
| bn+1 |
| 2n-1 |
| 2n+1-1 |
| 1 |
| 2 |
∴an+1>2an+2(n≥2),n=1时也成立
∴an+1>2an+2>…>2na1+2n+…+22+2=3•2n-2
∴an>3•2n-1-2
(3)由(2)知(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| a1+1 |
| a1 |
| a2+1 |
| a2 |
| an+1 |
| an |
=
| 1 |
| a1 |
| a1+1 |
| a2 |
| an+1 |
| an+1 |
=
| 2 |
| 3 |
| b2 |
| b3 |
| bn |
| bn+1 |
| 2 |
| 3 |
| b2 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
∵
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 |
| 3 |
| 1 |
| 2n-1 |
当k≥2时,
| 1 |
| 2k-1 |
| 1 |
| 2k-1 |
| 1 |
| 2k+1-1 |
∴1+
| 1 |
| 3 |
| 1 |
| 2n-1 |
| 1 |
| 22-1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
=1+2(
| 1 |
| 3 |
| 1 |
| 2n+1-1 |
| 5 |
| 3 |
∴原不等式成立.
点评:本题考查等比数列的证明,考查数列与不等式的结合,考查学生分析解决问题的能力,难度较大.
练习册系列答案
相关题目