题目内容

5.如图,在四棱柱ABCD-A1B1C1D1中,BB1⊥底面ABCD,AD∥BC,∠BAD=90°,AC⊥BD.
(Ⅰ)求证:B1C∥平面ADD1A1
(Ⅱ)求证:AC⊥B1D;
(Ⅲ)若AD=2AA1,判断直线B1D与平面ACD1是否垂直?并说明理由.

分析 (Ⅰ)先证明BC∥平面ADD1A1,CC1∥平面ADD1A1,又BC∩CC1=C,即可证明平面BCC1B1∥平面ADD1A1,从而可证B1C∥平面ADD1A1
(Ⅱ)先证明BB1⊥AC,又AC⊥BD,BB1∩BD=B,即可证明AC⊥平面BB1D,从而可证AC⊥B1D;
(Ⅲ)用反证法,假设B1D⊥平面ACD1,由AD1?平面ACD1,可得B1D⊥AD1,再证明A1B1⊥AD1,即可证明AD1⊥平面A1B1D,从而可得AD1⊥A1D,这与四边形AA1D1D为矩形,且AD=2AA1矛盾,故得证.

解答 (本题满分为14分)
证明:(Ⅰ)∵AD∥BC,BC?平面ADD1A1,AD?平面ADD1A1
∴BC∥平面ADD1A1,…(2分)
∵CC1∥DD1,CC1?平面ADD1A1,DD1?平面ADD1A1
∴CC1∥平面ADD1A1
又∵BC∩CC1=C,
∴平面BCC1B1∥平面ADD1A1,…(3分)
又∵B1C?平面BCC1B1
∴B1C∥平面ADD1A1.…(4分)
(Ⅱ)∵BB1⊥平面ABCD,AC?底面ABCD,
∴BB1⊥AC,…(5分)
又∵AC⊥BD,BB1∩BD=B,
∴AC⊥平面BB1D,…(7分)
又∵B1D?底面BB1D,
∴AC⊥B1D;…(9分)
(Ⅲ)结论:直线B1D与平面ACD1不垂直,…(10分)
证明:假设B1D⊥平面ACD1
由AD1?平面ACD1,可得B1D⊥AD1,…(11分)
由棱柱ABCD-A1B1C1D1中,BB1⊥底面ABCD,∠BAD=90°,
可得:A1B1⊥AA1,A1B1⊥A1D1
又∵AA1∩A1D1=A1
∴A1B1⊥平面AA1D1D,
∴A1B1⊥AD1,…(12分)
又∵A1B1∩B1D=B1
∴AD1⊥平面A1B1D,
∴AD1⊥A1D,…(13分)
这与四边形AA1D1D为矩形,且AD=2AA1矛盾,故直线B1D与平面ACD1不垂直.…(14分)

点评 本题主要考查了直线与平面垂直的判定,直线与平面平行的判定,考查了反证法的应用,考查了空间想象能力和推理论证能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网