题目内容

已知函数f(x)=(
3
sinωx+cosωx)cosωx-
1
2
.(ω>0)
的最小正周期为4π.
(1)求f(x)的单调递增区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
(1)f(x)=
3
sinωxcosωx+cos2ωx-
1
2
=sin(2ωx+
π
6
)

T=
=4π

ω=
1
4

f(x)=sin(
1
2
x+
π
6
)

∴f(x)的单调递增区间为[4kπ-
3
,4kπ+
3
](k∈Z)

(2)∵(2a-c)cosB=bcosC
∴2sinAcosB-sinCcosB=sinBcosC2sinAcosB=sin(B+C)=sinA
cosB=
1
2
,∴B=
π
3

f(A)=sin(
1
2
A+
π
6
)
0<A<
3
,∴
π
6
A
2
+
π
6
π
2

f(A)∈(
1
2
,1)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网