题目内容
已知数列{an}的各项均是正数,其前n项和为Sn,满足( p-1)Sn=p2-an,其中p为正常数,且p≠1.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 1 |
| 2-logpan |
| 3 |
| 4 |
分析:(1)利用sn+1-sn=an+1求出an的递推公式,进而求解.
(2)将(1)中的结论代入bn=
,求出bn,进而求出bnbn+2,利用列项法求出Tn,即可证明不等式.
(2)将(1)中的结论代入bn=
| 1 |
| 2-logpan |
解答:解:(Ⅰ)由题设知(p-1)a1=p2-a1,解得a1=p.(2分)
∵( p-1)Sn=p2-an,
∴( p-1)Sn+1=p2-an+1,
两式作差得(p-1)(Sn+1-Sn)=an-an+1.
∴(p-1)an+1=an-an+1,即an+1=
an,(4分)
∴数列{an}是首项为p,公比为
的等比数列.
∴an=p(
)n-1=(
)n-2.(6分)
(Ⅱ)∵bn=
=
=
(8分),
∴bnbb+2=
=
(
-
)(10分),
∴Tn=b1b3+b2b4+b3b5++bnbn+2
=
[(
-
)+(
-
)+(
-
)+(
-
)++(
-
)]
=
(1+
-
-
)<
(12分).
∵( p-1)Sn=p2-an,
∴( p-1)Sn+1=p2-an+1,
两式作差得(p-1)(Sn+1-Sn)=an-an+1.
∴(p-1)an+1=an-an+1,即an+1=
| 1 |
| p |
∴数列{an}是首项为p,公比为
| 1 |
| p |
∴an=p(
| 1 |
| p |
| 1 |
| p |
(Ⅱ)∵bn=
| 1 |
| 2-logpp2-n |
| 1 |
| 2-(2-n) |
| 1 |
| n |
∴bnbb+2=
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=b1b3+b2b4+b3b5++bnbn+2
=
| 1 |
| 2 |
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
点评:本题主要考查数列知识的综合运用以及证明不等式的能力,难度一般.
练习册系列答案
相关题目