题目内容

如图所示,四棱锥P—ABCD的底面是边长为a的菱形,∠A=60°,PC⊥平面ABCD,PC=a,E是PA的中点.

(1)求证平面BDE⊥平面ABCD.(2)求点E到平面PBC的距离.(3)求二面角A—EB—D的平面角大小.


解析:

(1)设O是AC,BD的交点,连结EO.

∵ABCD是菱形,∴O是AC、BD的中点,

∵E是PA的中点,∴EO∥PC,又PC⊥平面ABCD,

∴EO⊥平面ABCD,EO平面BDE,∴平面BDE⊥平面ABCD.

(2)EO∥PC,PC平面PBC,

∴EO∥平面PBC,于是点O到平面PBC的距离等于E到平面PBC的距离.

作OF⊥BC于F,

∵EO⊥平面ABCD,EO∥PC,PC平面PBC,∴平面PBC⊥平面ABCD,于是OF⊥平面PBC,OF的长等于O到平面PBC的距离.

由条件可知,OB=,OF=×a,则点E到平面PBC的距离为a.

(3)过O作OG⊥EB于G,连接AG  ∵OE⊥AC,BD⊥AC   ∴AC⊥平面BDE

∴AG⊥EB(三垂线定理)   ∴∠AGO是二面角A—EB—D的平面角

∵OE=PC=a,OB=a    ∴EB=a.∴OG=a  又AO=a.

∴tan∠AGO=∴∠AGO=arctan.

评析  本题考查了面面垂直判定与性质,以及利用其性质求点到面距离,及二面角的求法,三垂线定理及逆定理的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网