题目内容
数列{an}的通项公式为an=| 1 | (n+1)(n+2) |
分析:用裂项法将an化成 an=
-
.再逐项相加.
| 1 |
| n+1 |
| 1 |
| n+2 |
解答:解:an=
=
-
∴Sn=(
-
)+(
-
)+(
-
)+…+(
-
)=
-
=
.
故答案为
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| n |
| 2(n+2) |
故答案为
| n |
| 2(n+2) |
点评:本题考查了数列的求和以及等差数列的通项公式,此题采取裂项的方法求和,属于基础题.
练习册系列答案
相关题目