题目内容

18、如图,四边形ABCD为矩形,平面ABCD⊥平面ABE,BE=BC,F为CE上的一点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求证:AE∥平面BFD.
分析:(1)由平面ABCD⊥平面ABE,AD⊥AB,得到AD⊥平面ABE,从而得出AD⊥AE,由线面垂直的判定得AE⊥平面BCE,从而证得AE⊥BE,(2)设AC∩BD=G,连接FG,易知G是AC的中点,由中位线定理得FG∥AE,由线面平行的判定证得AE∥平面BFD.
解答:解:(1)证明:∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,AD⊥AB,
∴AD⊥平面ABE,AD⊥AE.
∵AD∥BC,则BC⊥AE.(3分)
又BF⊥平面ACE,则BF⊥AE.
∵BC∩BF=B,∴AE⊥平面BCE,∴AE⊥BE.(7分)

(2)设AC∩BD=G,连接FG,易知G是AC的中点,
∵BF⊥平面ACE,则BF⊥CE.
而BC=BE,∴F是EC中点.(10分)
在△ACE中,FG∥AE,
∵AE?平面BFD,FG?平面BFD,
∴AE∥平面BFD.(14分)
点评:本题通过线线平行和线面平行,线线垂直和线面垂直及面面垂直的转化,来考查线面、面面平行和垂直的判定定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网