题目内容
如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD=![]()
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PD与CD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为
?若存在,求出
的值;若不存在,请说明理由.
本小题主要考查直线与平面的位置关系,异面直线所成角、点到平面的距离等基本知识,考查空间想象能力、逻辑思维能力和运算能力。 ![]()
解法一:
(Ⅰ)证明:在△PAD中PA=PD,O为AD中点,所以PO⊥AD,
又侧面PAD⊥底面ABCD,平面
平面ABCD=AD,
平面PAD,
所以PO⊥平面ABCD.
(Ⅱ)连结BO,在直角梯形ABCD中、BC∥AD,AD=2AB=2BC,
有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,
所以OB∥DC.
由(Ⅰ)知,PO⊥OB,∠PBO为锐角,
所以∠PBO是异面直线PB与CD所成的角.
因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,
所以OB=
,
在Rt△POA中,因为AP=
,AO=1,所以OP=1,
在Rt△PBO中,tan∠PBO=![]()
所以异面直线PB与CD所成的角是
.
(Ⅲ)假设存在点Q,使得它到平面PCD的距离为
.
设QD=x,则
,由(Ⅱ)得CD=OB=
,
在Rt△POC中, ![]()
所以PC=CD=DP, S△PCD=
·
=
.
由VP-DQC=VQ-PCD,得![]()
所以存在点Q满足题意,此时
.
解法二:
(Ⅰ)同解法一.
(Ⅱ)以O为坐标原点,
的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz,依题意,易得A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),
P(0,0,1),
![]()
所以![]()
所以异面直线PB与CD所成的角是arccos
,
(Ⅲ)假设存在点Q,使得它到平面PCD的距离为
,
由(Ⅱ)知![]()
设平面PCD的法向量为n=(x0,y0,z0).
![]()
则 n·
=0,所以 -x0+ z0=0,
n·
=0, -x0+ y0=0,
即x0=y0=z0,
取x0=1,得平面PCD的一个法向量为n=(1,1,1).
设
由
=
,得
解y=-
或y=
(舍去),
此时
,所以存在点Q满足题意,此时
.