题目内容
若a>0且a≠1,函数y=|ax-1|与y=2a的图象有两个交点,则a的取值范围是分析:画出函数函数y=|ax-1|与y=2a的图象,即可求出a的取值范围.
解答:
解:不妨作出0<a<1时的函数图象,要使两个函数有两个交点,
必须有0<2a<1,
即a∈(0,
),
a>1时无满足题意的a的值.
故答案为:(0,
).
必须有0<2a<1,
即a∈(0,
| 1 |
| 2 |
a>1时无满足题意的a的值.
故答案为:(0,
| 1 |
| 2 |
点评:本题考查指数函数的图象,函数的图象,指数函数的性质,是基础题.
练习册系列答案
相关题目