题目内容
若an=1+2+3+…+n,则Sn为数列{
}的前n项和,则Sn=______.
| 1 |
| an |
由题意可得,an=
∴
=
=2(
-
)
∴Sn=a1+a2+…+an
=2(1-
+
-
+…+
-
)
=2(1-
)=
故答案为:
| n(n+1) |
| 2 |
∴
| 1 |
| an |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=a1+a2+…+an
=2(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
| 2n |
| n+1 |
故答案为:
| 2n |
| n+1 |
练习册系列答案
相关题目