题目内容

正方体ABCD-A1B1C1D1中AB的中点为M,DD1的中点为N,则异面直线B1M与CN所成的角是


  1. A.
  2. B.
    45°
  3. C.
    60°
  4. D.
    90°
D
分析:根据异面直线所成角的定义,把直线CN平移和直线B1M相交,找到异面直线B1M与CN所成的角,解三角形即可求得结果.在平移直线时经常用到遇到中点找中点的方法.
解答:解:去AA1的中点E,连接EN,BE角B1M于点O,
则EN∥BC,且EN=BC
∴四边形BCNE是平行四边形
∴BE∥CN
∴∠BOM就是异面直线B1M与CN所成的角,
而Rt△BB1M≌Rt△ABE
∴∠ABE=∠BB1M,∠BMB1=∠AEB,
∴∠BOM=90°.
故选D.
点评:此题是个基础题.考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网