题目内容
已知函数f(x)=x-2
+2(x≥2)
(1)求反函数f-1(x);
(2)若数列{an}(an>0)的前n项和Sn满足:a1=2,Sn=f-1(Sn-1)(n≥2)
①求数列{an}的通项公式.
②令bn=a2n+n,求数列{bn}前n项和Tn.
| 2x |
(1)求反函数f-1(x);
(2)若数列{an}(an>0)的前n项和Sn满足:a1=2,Sn=f-1(Sn-1)(n≥2)
①求数列{an}的通项公式.
②令bn=a2n+n,求数列{bn}前n项和Tn.
分析:(1)函数f(x)=x-2
+2(x≥2),得2
x=x-y+2,x≥2,两边平方,并整理,得x2-(2y+4)x+y2-4y+4=0,x≥2.所以x=y+2+2
=(
+
)2,x,y互换,得反函数f-1(x).
(2)①由
=
+
,知Sn=2n2,由此能求出数列{an}的通项公式.
②由bn=4(2n+n)-2,由求出数列{bn}前n项和Tn.
| 2x |
| 2 |
| y |
| 2 |
| x |
(2)①由
| Sn |
| Sn-1 |
| 2 |
②由bn=4(2n+n)-2,由求出数列{bn}前n项和Tn.
解答:解:(1)∵函数f(x)=x-2
+2(x≥2)
∴2
x=x-y+2,x≥2,
两边平方,得8x2=x2+y2+4-2xy-4y+4x,
整理,得x2-(2y+4)x+y2-4y+4=0,x≥2.
∴x=
=y+2+2
=(
+
)2,
x,y互换,得f-1(x)=(
+
)2(x≥0).
(2)①∵a1=2,Sn=f-1(Sn-1)(n≥2)
f-1(x)=(
+
)2(x≥0).
∴Sn=(
+
)2
∴
=
+
,
∵
=
=
,
∴
=
+(n-1)
=
n,
∴Sn=2n2,
∵a1=S1=2,
an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
当n=1时,4n-2=2=a1,
∴an=4n-2.
②∵bn=a2n+n,
且an=4n-2.
∴bn=4(2n+n)-2,
∴Tn=4(1+2+3+…+n)+4(2+22+23+…+2n)-2n
∴Tn=4•
+4•
-2n=2n+3+2n2-8.
| 2x |
∴2
| 2 |
两边平方,得8x2=x2+y2+4-2xy-4y+4x,
整理,得x2-(2y+4)x+y2-4y+4=0,x≥2.
∴x=
2y+4+
| ||
| 2 |
=y+2+2
| 2y |
| 2 |
| y |
x,y互换,得f-1(x)=(
| x |
| 2 |
(2)①∵a1=2,Sn=f-1(Sn-1)(n≥2)
f-1(x)=(
| x |
| 2 |
∴Sn=(
| Sn-1 |
| 2 |
∴
| Sn |
| Sn-1 |
| 2 |
∵
| S 1 |
| a1 |
| 2 |
∴
| Sn |
| 2 |
| 2 |
| 2 |
∴Sn=2n2,
∵a1=S1=2,
an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
当n=1时,4n-2=2=a1,
∴an=4n-2.
②∵bn=a2n+n,
且an=4n-2.
∴bn=4(2n+n)-2,
∴Tn=4(1+2+3+…+n)+4(2+22+23+…+2n)-2n
∴Tn=4•
| 2(1-2n) |
| 1-2 |
| n(n+1) |
| 2 |
点评:本题考查反函数的求法、数列通项公式的求法和数列的前n项和的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目