题目内容

已知函数y=Asin(ωx+?),x∈R(其中A>0,ω>0)的图象在y轴右侧的第一个最高点(函数取最大值的点)为M(2,2
2
),与x轴在原点右侧的第一个交点为N(6,0),求这个函数的解析式.
根据题意,可知A=2
2

T
4
=6-2=4

所以T=16于是ω=
T
=
π
8

将点M的坐标(2,2
2
),代入y=2
2
sin(
π
8
x+?)
,得2
2
=2
2
sin(
π
8
×2+?)
,即sin(
π
4
+?)=1

所以满足
π
4
+?=
π
2
的?为最小正数解,
?=
π
4

从而所求的函数解析式是y=2
2
sin(
π
8
x+
π
4
),x∈R
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网