ÌâÄ¿ÄÚÈÝ
ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬µãAnÂú×ã
=(0£¬1)£¬ÇÒ
=(1£¬1)£»µãBnÂú×ã
=(3£¬0)£¬ÇÒ
=(3•(
)n£¬0)£¬ÆäÖÐn¡ÊN*£®
£¨1£©Çó
µÄ×ø±ê£¬²¢Ö¤Ã÷µãAnÔÚÖ±Ïßy=x+1ÉÏ£»
£¨2£©¼ÇËıßÐÎAnBnBn+1An+1µÄÃæ»ýΪan£¬ÇóanµÄ±í´ïʽ£»
£¨3£©¶ÔÓÚ£¨2£©ÖеÄan£¬ÊÇ·ñ´æÔÚ×îСµÄÕýÕûÊýP£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*¶¼ÓÐan£¼P³ÉÁ¢£¿Èô´æÔÚ£¬ÇóPµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
| OA1 |
| AnAn+1 |
| OB1 |
| BnBn+1 |
| 2 |
| 3 |
£¨1£©Çó
| OA2 |
£¨2£©¼ÇËıßÐÎAnBnBn+1An+1µÄÃæ»ýΪan£¬ÇóanµÄ±í´ïʽ£»
£¨3£©¶ÔÓÚ£¨2£©ÖеÄan£¬ÊÇ·ñ´æÔÚ×îСµÄÕýÕûÊýP£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN*¶¼ÓÐan£¼P³ÉÁ¢£¿Èô´æÔÚ£¬ÇóPµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÓÉÒÑÖªÌõ¼þµÃ£¬
=(1£¬1)£¬
=
-
£¬¡à
=(1£¬2)£¬
¡ß
=(1£¬1)£¬¡à
-
=(1£¬ 1)
Éè
=(xn£¬yn)£¬Ôòxn+1-xn=1£¬yn+1-yn=1
¡àxn=0+£¨n-1£©•1=n-1£»yn=1+£¨n-1£©•1=n£®
¼´An=£¨n-1£¬n£©Âú×ã·½³Ìy=x+1£¬¡àµãAnÔÚÖ±Ïßy=x+1ÉÏ£®
£¨2£©ÓÉ£¨1£©µÃAn£¨n-1£¬n£©£¬
=
-
=(3•(
) n£¬0)£¬
ÉèBn£¨un£¬vn£©£¬Ôòu1=3£¬v1=0£¬vn+1-vn=0£¬¡àvn=0£¬
un+1-un=3•(
)n£¬Öð²îÀۺ͵ã¬un=9(1-(
)n)£¬
¡àBn(9(1-(
)n)£¬0)£®
ÉèÖ±Ïßy=x+1ÓëxÖáµÄ½»µãP£¨-1£¬0£©£¬Ôòan=S¡÷PAn+1Bn+1-S¡÷PAnBn=
[10-9(
)n+1](n+1)-
[10-9(
)n]nan=5+(n-2)(
)n-1£¬n¡ÊN*£®
£¨3£©ÓÉ£¨2£©an=5+(n-2)(
)n-1£¬n¡ÊN*
an+1-an=[5+(n-1)(
)n]-[5+(n-2)(
)n-1]=
(
)n-1£¬
ÓÚÊÇ£¬a1£¼a2£¼a3£¼a4=a5£¬a5£¾a6£¾a7£¾¡
ÊýÁÐ{an}ÖÐÏîµÄ×î´óֵΪa4=a5=5+
£¬ÔòP£¾5
£¬¼´×îСµÄÕýÕûÊýpµÄֵΪ6£¬
ËùÒÔ£¬´æÔÚ×îСµÄ×ÔÈ»Êýp=6£¬¶ÔÒ»ÇÐn¡ÊN*¶¼ÓÐan£¼p³ÉÁ¢£®
| A1A2 |
| A1A2 |
| OA2 |
| OA1 |
| OA2 |
¡ß
| AnAn+1 |
| OAn+1 |
| OAn |
Éè
| OAn |
¡àxn=0+£¨n-1£©•1=n-1£»yn=1+£¨n-1£©•1=n£®
¼´An=£¨n-1£¬n£©Âú×ã·½³Ìy=x+1£¬¡àµãAnÔÚÖ±Ïßy=x+1ÉÏ£®
£¨2£©ÓÉ£¨1£©µÃAn£¨n-1£¬n£©£¬
| BnBn+1 |
| OBn+1 |
| OBn |
| 2 |
| 3 |
ÉèBn£¨un£¬vn£©£¬Ôòu1=3£¬v1=0£¬vn+1-vn=0£¬¡àvn=0£¬
un+1-un=3•(
| 2 |
| 3 |
| 2 |
| 3 |
¡àBn(9(1-(
| 2 |
| 3 |
ÉèÖ±Ïßy=x+1ÓëxÖáµÄ½»µãP£¨-1£¬0£©£¬Ôòan=S¡÷PAn+1Bn+1-S¡÷PAnBn=
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 2 |
| 3 |
£¨3£©ÓÉ£¨2£©an=5+(n-2)(
| 2 |
| 3 |
an+1-an=[5+(n-1)(
| 2 |
| 3 |
| 2 |
| 3 |
| 4-n |
| 3 |
| 2 |
| 3 |
ÓÚÊÇ£¬a1£¼a2£¼a3£¼a4=a5£¬a5£¾a6£¾a7£¾¡
ÊýÁÐ{an}ÖÐÏîµÄ×î´óֵΪa4=a5=5+
| 16 |
| 27 |
| 16 |
| 27 |
ËùÒÔ£¬´æÔÚ×îСµÄ×ÔÈ»Êýp=6£¬¶ÔÒ»ÇÐn¡ÊN*¶¼ÓÐan£¼p³ÉÁ¢£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿