题目内容
设定义在R上的函数
,若关于x的方程f2(x)+af(x)+b=0有5个不同实数解,则实数a的取值范围是
- A.(0,1)
- B.(-∞,-1)
- C.(1,+∞)
- D.(-∞,-2)∪(-2,-1)
D
分析:题中原方程f2(x)+af(x)+b=0有且只有5个不同实数解,即要求对应于f(x)=某个常数有3个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有当f(x)=1时,它有三个根.且当f(x)=k,K>0且k≠1时,关于x的方程f2(x)+af(x)+b=0有5个不同实数解,据此即可求得实数a的取值范围.
解答:
解:∵题中原方程f2(x)+af(x)+b=0有且只有5个不同实数解,
∴即要求对应于f(x)等于某个常数有3个不同实数解,
∴故先根据题意作出f(x)的简图:
由图可知,只有当f(x)=1时,它有三个根.
故关于x的方程f2(x)+af(x)+b=0中,
有:1+a+b=0,b=-1-a,
且当f(x)=k,k>0且k≠1时,关于x的方程f2(x)+af(x)+b=0有5个不同实数解,
∴k2+ak-1-a=0,
a=-1-k,∵k>0且k≠1,
∴a∈(-∞,-2)∪(-2,-1)
故选D.
点评:数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.
分析:题中原方程f2(x)+af(x)+b=0有且只有5个不同实数解,即要求对应于f(x)=某个常数有3个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有当f(x)=1时,它有三个根.且当f(x)=k,K>0且k≠1时,关于x的方程f2(x)+af(x)+b=0有5个不同实数解,据此即可求得实数a的取值范围.
解答:
∴即要求对应于f(x)等于某个常数有3个不同实数解,
∴故先根据题意作出f(x)的简图:
由图可知,只有当f(x)=1时,它有三个根.
故关于x的方程f2(x)+af(x)+b=0中,
有:1+a+b=0,b=-1-a,
且当f(x)=k,k>0且k≠1时,关于x的方程f2(x)+af(x)+b=0有5个不同实数解,
∴k2+ak-1-a=0,
a=-1-k,∵k>0且k≠1,
∴a∈(-∞,-2)∪(-2,-1)
故选D.
点评:数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.
练习册系列答案
相关题目
设定义在R上的函数f(x)同时满足以下条件:①f(x+1)=-f(x)对任意的x都成立;②当x∈[0,1]时,f(x)=ex-e•cos
+m(其中e=2.71828…是自然对数的底数,m是常数).记f(x)在区间[2013,2016]上的零点个数为n,则( )
| πx |
| 2 |
A、m=-
| ||
| B、m=1-e,n=5 | ||
C、m=-
| ||
| D、m=e-1,n=4 |