题目内容
7、已知定义在R上的奇函数f(x)满足f(2-x)-f(x)=0,且f(-1)=1,则f(1)+f(2)+f(3)+…+f(2010)的值为( )
分析:本题通过赋值法对f(2-x)-f(x)=0中的x进行赋值为4+x,即可得到函数f(x)的周期为4,根据奇函数的性质得到f(0)=0,再通过赋值法得到f(1),f(2),f(3),f(4)即可求解
解答:解:∵f(2-x)-f(x)=0
令x~4+x
∴f(2-(4+x))-f(4+x)=0
即f(2-x)=f(4+x)
f(x)=f(4+x)
故函数f(x)的周期为4
∵定义在R上的奇函数f(x)满足f(2-x)-f(x)=0,且f(-1)=1
∴f(0)=0,f(1)=-1,f(2)=0,f(3)=1,f(4)=0
∴f(1)+f(2)+f(3)+…+f(2010)=502(f(1)+f(2)+f(3)+f(4))+f(2009)+f(2010)
=502(f(1)+f(2)+f(3)+f(4))+f(1)+f(2)
=-1
故选A
令x~4+x
∴f(2-(4+x))-f(4+x)=0
即f(2-x)=f(4+x)
f(x)=f(4+x)
故函数f(x)的周期为4
∵定义在R上的奇函数f(x)满足f(2-x)-f(x)=0,且f(-1)=1
∴f(0)=0,f(1)=-1,f(2)=0,f(3)=1,f(4)=0
∴f(1)+f(2)+f(3)+…+f(2010)=502(f(1)+f(2)+f(3)+f(4))+f(2009)+f(2010)
=502(f(1)+f(2)+f(3)+f(4))+f(1)+f(2)
=-1
故选A
点评:本题通过赋值法结合奇函数的性质,利用周期性和图象平移的知识即可求解,属于基础题.
练习册系列答案
相关题目