题目内容
设函数f(x)=x2+ax+b(a、b为实常数),已知不等式|f(x)|≤|2x2+4x-6|对任意的实数x均成立.定义数列{an}和{bn}:a1=3,2an=f(an-1)+3(n=2,3,…),bn=| 1 |
| 2+an |
(I)求a、b的值;
(II)求证:Sn<
| 1 |
| 3 |
(III )求证:an>22n-1-1(n∈N*).
分析:( I)由|f(x)|≤|2x2+4x-6|=2|(x+3)(x-1)|知a=2,b=-3,由此可知f(x)=x2+2x-3(2分)
(II)由2an=f(an-1)+3=an-12+2an-1=an-1(an-1+2)(n≥2)知bn=
=
=
=
=
-
.故Sn=b1+b2++bn=(
-
)+(
-
)++(
-
).=
-
=
-
.由此可知Sn<
(n∈N*).
(III)由2an=an-12+2an-1(n≥2)知(an-1+1)2=2an+1<2(an+1)(n≥2),设an+1=cn,可求出1+log2cn>2log2cn-1,设dn=log2cn,可求出dn-1>22(dn-2-1)>>2n-1(d1-1)=2n-1(n≥2),由此可知an>22n-1-1(n∈N*).
(II)由2an=f(an-1)+3=an-12+2an-1=an-1(an-1+2)(n≥2)知bn=
| 1 |
| 2+an |
| an |
| 2an+1 |
| an2 |
| 2anan+1 |
| 2an+1-2an |
| 2anan+1 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| an+1 |
| 1 |
| 3 |
| 1 |
| an+1 |
| 1 |
| 3 |
(III)由2an=an-12+2an-1(n≥2)知(an-1+1)2=2an+1<2(an+1)(n≥2),设an+1=cn,可求出1+log2cn>2log2cn-1,设dn=log2cn,可求出dn-1>22(dn-2-1)>>2n-1(d1-1)=2n-1(n≥2),由此可知an>22n-1-1(n∈N*).
解答:解:( I)由|f(x)|≤|2x2+4x-6|=2|(x+3)(x-1)|得f(-3)=0,f(1)=0,
故a=2,b=-3,∴f(x)=x2+2x-3
(II)由2an=f(an-1)+3=an-12+2an-1=an-1(an-1+2)(n≥2)得
=
(n≥2),
∴bn=
=
=
=
=
-
.
∴Sn=b1+b2++bn=(
-
)+(
-
)++(
-
).=
-
=
-
.
∵2an=an-12+2an-1(n≥2),∴2an-2an-1=an-12≥0(n≥2),
∴an≥an-1(n≥2),从而an≥an-1≥≥a2≥a1=3>0,即an+1>0,∴Sn<
(n∈N*).
(III)由2an=an-12+2an-1(n≥2)得(an-1+1)2=2an+1<2(an+1)(n≥2),
设an+1=cn,则c1=4,且2cn>cn-12(n≥2),
于是1+log2cn>2log2cn-1(n≥2),
设dn=log2cn,则d1=2,且1+dn>2dn-1(n≥2),∴dn-1>2(dn-1-1)(n≥2),
∴dn-1>22(dn-2-1)>>2n-1(d1-1)=2n-1(n≥2),
从而n≥2时,dn>2n-1+1>2n-1,∴cn=2dn>22n-1,∴an=cn-1>22n-1-1.
当n=1时,a1=3>221-1-1=1,∴an>22n-1-1(n∈N*).
故a=2,b=-3,∴f(x)=x2+2x-3
(II)由2an=f(an-1)+3=an-12+2an-1=an-1(an-1+2)(n≥2)得
| 1 |
| an-1+2 |
| an-1 |
| 2an |
∴bn=
| 1 |
| 2+an |
| an |
| 2an+1 |
| an2 |
| 2anan+1 |
| 2an+1-2an |
| 2anan+1 |
| 1 |
| an |
| 1 |
| an+1 |
∴Sn=b1+b2++bn=(
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| an+1 |
| 1 |
| 3 |
| 1 |
| an+1 |
∵2an=an-12+2an-1(n≥2),∴2an-2an-1=an-12≥0(n≥2),
∴an≥an-1(n≥2),从而an≥an-1≥≥a2≥a1=3>0,即an+1>0,∴Sn<
| 1 |
| 3 |
(III)由2an=an-12+2an-1(n≥2)得(an-1+1)2=2an+1<2(an+1)(n≥2),
设an+1=cn,则c1=4,且2cn>cn-12(n≥2),
于是1+log2cn>2log2cn-1(n≥2),
设dn=log2cn,则d1=2,且1+dn>2dn-1(n≥2),∴dn-1>2(dn-1-1)(n≥2),
∴dn-1>22(dn-2-1)>>2n-1(d1-1)=2n-1(n≥2),
从而n≥2时,dn>2n-1+1>2n-1,∴cn=2dn>22n-1,∴an=cn-1>22n-1-1.
当n=1时,a1=3>221-1-1=1,∴an>22n-1-1(n∈N*).
点评:本题考查数列的综合运用,难度较大,解题时要认真审题,仔细解答.
练习册系列答案
相关题目