题目内容

(2012•眉山一模)已知正项数列{an}的前项和为Sn,且满足2
Sn
=an+1(n∈N*)

(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)设bn=
an+1
2n
Tn=b1+b2+b3+…+bn,求Tn

(Ⅲ)设Cn=
1
(5-Tn-
5
2n
)•2n•(n+1)
,求证:C1+C2+C3+…+Cn
1
2
分析:(Ⅰ)由2
Sn
=an+1,知Sn=
(an+1)2
4
,故2(an+1+an)=(an+1+an)(an+1-an),所以(an+1+an)(an+1-an-2)=0,由此能够证明数列{an}是首项为a1=1,公差d=2的等差数列.
(Ⅱ)由(Ⅰ)知:an=a1+(n-1)d=2n-1,由bn=
an+1
2n
=
2n+1
2n
,知Tn=b1+b2+…+bn=
3
2
+
5
22
 +…+
2n-1
2n
+
2n+1
2n+1
,再由错位相减法能够求出Tn=5-
2n+5
2n

(Ⅲ)由(Ⅱ)得:S-Tn-
5
2n
=
2n+5
2n
-
5
2n
=
2n
2n
,故Cn=
1
2n
2n
2n•(n+1)
=
1
2n(n+1)
=
1
2
(
1
n
-
1
n+1
)
,由此能够证明C1+C2+C3+…+Cn
1
2
解答:(Ⅰ)证明:∵2
Sn
=an+1,
Sn=
(an+1)2
4

∴an+1=Sn+1-Sn=
(an+1+1)2
4
-
(an+1)2
4

=
1
4
(a n+12-an2+2an+1-2an)

即:2(an+1+an)=(an+1+an)(an+1-an),
∴(an+1+an)(an+1-an-2)=0,
∵an>0,∴an+1+an>0,∴an+1-an-2=0,
∴an+1-an=2,
当n=1时,S1=
(a1+1) 2
4
,即a1=
(a1+1) 2
4

a12-2a1+1=0,解得a1=1.
∴数列{an}是首项为a1=1,公差d=2的等差数列.
(Ⅱ)解:由(Ⅰ)知:an=a1+(n-1)d=2n-1,
bn=
an+1
2n
=
2n+1
2n

∴Tn=b1+b2+…+bn=
3
2
+
5
22
 +…+
2n-1
2n
+
2n+1
2n+1
,①
1
2
Tn
=
3
22
+
5
23
+…+
2n-1
2n
+
2n+1
2n+1
,②
①-②得:
1
2
Tn =
3
2
+
2
22
+
2
2 3
+…+
2
2n
-
2n+1
2n+1

=
3
2
+2×
1
2 2
(1-
1
2n-1
)
1-
1
2
-
2n+1
2n+1

=
5
2
-
2n+5
2n+1

Tn=5-
2n+5
2n

(Ⅲ)证明:由(Ⅱ)得:S-Tn-
5
2n
=
2n+5
2n
-
5
2n
=
2n
2n

Cn=
1
2n
2n
2n•(n+1)

=
1
2n(n+1)
=
1
2
(
1
n
-
1
n+1
)

∴c1+c2+c3+…+cn=
1
2
(1-
1
2
)+
1
2
(
1
2
-
1
3
)+…+
1
2
(
1
n
-
1
n+1
)

=
1
2
-
1
2(n+1)
1
2
(n∈N*)

C1+C2+C3+…+Cn
1
2
点评:本题考查数列与不等式的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网