题目内容
(2012•眉山一模)已知正项数列{an}的前项和为Sn,且满足2
=an+1(n∈N*).
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)设bn=
,Tn=b1+b2+b3+…+bn,求Tn;
(Ⅲ)设Cn=
,求证:C1+C2+C3+…+Cn<
.
| Sn |
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)设bn=
| an+1 |
| 2n |
(Ⅲ)设Cn=
| 1 | ||
(5-Tn-
|
| 1 |
| 2 |
分析:(Ⅰ)由2
=an+1,知Sn=
,故2(an+1+an)=(an+1+an)(an+1-an),所以(an+1+an)(an+1-an-2)=0,由此能够证明数列{an}是首项为a1=1,公差d=2的等差数列.
(Ⅱ)由(Ⅰ)知:an=a1+(n-1)d=2n-1,由bn=
=
,知Tn=b1+b2+…+bn=
+
+…+
+
,再由错位相减法能够求出Tn=5-
.
(Ⅲ)由(Ⅱ)得:S-Tn-
=
-
=
,故Cn=
=
=
(
-
),由此能够证明C1+C2+C3+…+Cn<
.
| Sn |
| (an+1)2 |
| 4 |
(Ⅱ)由(Ⅰ)知:an=a1+(n-1)d=2n-1,由bn=
| an+1 |
| 2n |
| 2n+1 |
| 2n |
| 3 |
| 2 |
| 5 |
| 22 |
| 2n-1 |
| 2n |
| 2n+1 |
| 2n+1 |
| 2n+5 |
| 2n |
(Ⅲ)由(Ⅱ)得:S-Tn-
| 5 |
| 2n |
| 2n+5 |
| 2n |
| 5 |
| 2n |
| 2n |
| 2n |
| 1 | ||
|
| 1 |
| 2n(n+1) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
解答:(Ⅰ)证明:∵2
=an+1,
∴Sn=
,
∴an+1=Sn+1-Sn=
-
=
(a n+12-an2+2an+1-2an),
即:2(an+1+an)=(an+1+an)(an+1-an),
∴(an+1+an)(an+1-an-2)=0,
∵an>0,∴an+1+an>0,∴an+1-an-2=0,
∴an+1-an=2,
当n=1时,S1=
,即a1=
,
∴a12-2a1+1=0,解得a1=1.
∴数列{an}是首项为a1=1,公差d=2的等差数列.
(Ⅱ)解:由(Ⅰ)知:an=a1+(n-1)d=2n-1,
∵bn=
=
,
∴Tn=b1+b2+…+bn=
+
+…+
+
,①
Tn=
+
+…+
+
,②
①-②得:
Tn =
+
+
+…+
-
=
+2×
-
=
-
,
∴Tn=5-
.
(Ⅲ)证明:由(Ⅱ)得:S-Tn-
=
-
=
,
∴Cn=
=
=
(
-
),
∴c1+c2+c3+…+cn=
(1-
)+
(
-
)+…+
(
-
)
=
-
<
(n∈N*),
故C1+C2+C3+…+Cn<
.
| Sn |
∴Sn=
| (an+1)2 |
| 4 |
∴an+1=Sn+1-Sn=
| (an+1+1)2 |
| 4 |
| (an+1)2 |
| 4 |
=
| 1 |
| 4 |
即:2(an+1+an)=(an+1+an)(an+1-an),
∴(an+1+an)(an+1-an-2)=0,
∵an>0,∴an+1+an>0,∴an+1-an-2=0,
∴an+1-an=2,
当n=1时,S1=
| (a1+1) 2 |
| 4 |
| (a1+1) 2 |
| 4 |
∴a12-2a1+1=0,解得a1=1.
∴数列{an}是首项为a1=1,公差d=2的等差数列.
(Ⅱ)解:由(Ⅰ)知:an=a1+(n-1)d=2n-1,
∵bn=
| an+1 |
| 2n |
| 2n+1 |
| 2n |
∴Tn=b1+b2+…+bn=
| 3 |
| 2 |
| 5 |
| 22 |
| 2n-1 |
| 2n |
| 2n+1 |
| 2n+1 |
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-1 |
| 2n |
| 2n+1 |
| 2n+1 |
①-②得:
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 22 |
| 2 |
| 2 3 |
| 2 |
| 2n |
| 2n+1 |
| 2n+1 |
=
| 3 |
| 2 |
| ||||
1-
|
| 2n+1 |
| 2n+1 |
=
| 5 |
| 2 |
| 2n+5 |
| 2n+1 |
∴Tn=5-
| 2n+5 |
| 2n |
(Ⅲ)证明:由(Ⅱ)得:S-Tn-
| 5 |
| 2n |
| 2n+5 |
| 2n |
| 5 |
| 2n |
| 2n |
| 2n |
∴Cn=
| 1 | ||
|
=
| 1 |
| 2n(n+1) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
∴c1+c2+c3+…+cn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 2 |
| 1 |
| 2(n+1) |
| 1 |
| 2 |
故C1+C2+C3+…+Cn<
| 1 |
| 2 |
点评:本题考查数列与不等式的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目