题目内容

已知函数f(x)=lnx-
a
x
+2.
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若xlnx≤mx2-
1
2
在x∈[
1
e
,1]上恒成立,求m的取值范围.
分析:(Ⅰ)求导函数,对参数a进行讨论,即可确定函数f(x)的单调区间;
(Ⅱ)先分离参数,构造函数,确定函数的最大值,即可求得m的取值范围.
解答:解:(Ⅰ)定义域{x|x>0}.(1分)f′(x)=
1
x
+
a
x2
=
x+a
x2

当a<0时,x∈(0,-a),f'(x)<0,f(x)单调递减,
x∈(-a,+∞),f'(x)>0,f(x)单调递增;
当a≥0时,x∈(0,+∞),f'(x)>0,f(x)单调递增.(4分)
(Ⅱ)由xlnx≤mx2-
1
2
,得
lnx
x
+
1
2x2
≤m

令已知函数g(x)=
lnx
x
+
1
2x2
.(5分)g′(x)=
1-lnx-
1
x
x2

∵当a=-1时,f(x)=lnx+
1
x
+2

g′(x)=
1-lnx-
1
x
x2
=
3-(lnx+
1
x
+2)
x2
.(7分)
当x∈(0,1)时,f(x)单调递减,x∈(1,+∞)时,f(x)单调递增.(8分)
f(x)≥f(1)=3,即lnx+
1
x
+2≥3

g′(x)=
3-(lnx+
1
x
+2)
x2
≤0

∴g(x)在x∈(0,+∞)上,g'(x)≤0,g(x)单调递减,(9分)
[
1
e
,1]
上,g(x)≤g(
1
e
)=-e+
e2
2
,若
lnx
x
+
1
2x2
≤m
恒成立,则m∈[-e+
e2
2
,+∞)
.(10分)
点评:本题考查导数知识的运用,考查恒成立问题,考查分离参数法的运用,解题的关键是确定函数的单调性,确定函数的最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网