题目内容

设点P是△ABC内的一点,记
S△PAB
S△ABC
1
S△PBC
S△ABC
2
S△PCA
S△ABC
3,f(P)=(λ1,λ2,λ3).若
AQ
=
1
3
AB
+
1
2
AC
,则f(Q)=
 
分析:分析知λ的值对应的是P分△ABC所得三个三角形的高与△ABC的高的比值,比值大,说明相应的小三角形的高比较大,根据
AQ
=
1
3
AB
+
1
2
AC
可知Q是△ABC的重心,可求出f(Q)的值
解答:解:由已知得,f(P)=(λ1,λ2,λ3)中的三个坐标分别为P分△ABC所得三个三角形的高与△ABC的高的比值,
AQ
=
1
3
AB
+
1
2
AC

∴Q是△ABC的重心
∴f(Q)=(
1
2
1
6
1
3

故答案为:(
1
2
1
6
1
3
点评:考查对新定义的理解,此类题关键是通过新给出的定义明了定义所告诉的关系与运算,然后用定义所提供的方式来解题,本题是把相应的坐标与小三角形的高与大三角形的比值对应起来,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网