题目内容
已知数列{an}满足(n-1)an+1=(n+1)(an-1)且a2=6,设bn=an+n(n∈N*).(1)求{bn}的通项公式;
(2)求
(
+
+
+…+
)的值.
解:(1)n=1时,由(n-1)an+1=(n+1)(an-1),得a1=1.
n=2时,a2=6代入得a3=15.
同理,a4=28,再代入bn=an+n,有b1=2,b2=8,b3=18,b4=32,由此猜想bn=2n2.
要证bn=2n2,只需证an=2n2-n.
①当n=1时,a1=2×12-1=1成立.
②假设当n=k时,ak=2k2-k成立.
那么当n=k+1时,由(k-1)ak+1=(k+1)(ak-1),得ak+1=
(ak-1)
=
(2k2-k-1)=
(2k+1)(k-1)
=(k+1)(2k+1)=2(k+1)2-(k+1).
∴当n=k+1时,an=2n2-n正确,从而bn=2n2.
(2)
(
+
+…+
)=
(
+
+…+
)
=![]()
[
+
+…+
]
=![]()
[1-
+
-
+…+
-
]
=![]()
[1+
-
-
]
=
.
练习册系列答案
相关题目