题目内容
已知函数f(x)=3x3-9x+5.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)求函数f(x)在[-2,2]上的最大值和最小值.
解:(I)f′(x)=9x2-9.(2分)
令9x2-9>0,(4分)解
此不等式,得x<-1或x>1.
因此,函数f(x)的单调增区间为(-∞,-1)和(1,+∞).((6分)
(II)令9x2-9=0,得x=1或x=-1.(8分)
当x变化时,f′(x),f(x)变化状态如下表:
(10分)
从表中可以看出,当x=-2或x=1时,函数f(x)取得最小值-1.
当x=-1或x=2时,函数f(x)取得最大值11.(12分)
分析:(I)求出函数f(x)的导函数,令导函数大于0求出x的范围,写成区间即为函数f(x)的单调递增区间.
(II)列出当x变化时,f′(x),f(x)变化状态表,求出函数在[-2,2]上的极值及两个端点的函数值,选出最大值和最小值.
点评:求函数在闭区间上的最值问题,一般利用导数求出函数的极值,再求出函数在两个端点的函数值,从它们中选出最值.
令9x2-9>0,(4分)解
此不等式,得x<-1或x>1.
因此,函数f(x)的单调增区间为(-∞,-1)和(1,+∞).((6分)
(II)令9x2-9=0,得x=1或x=-1.(8分)
当x变化时,f′(x),f(x)变化状态如下表:
| x | -2 | (-2,-1) | -1 | (-1,1) | 1 | (1,2) | 2 |
| f′(x) | + | 0 | - | 0 | + | ||
| f(x) | -1 | ↑ | 11 | ↓ | -1 | ↑ | 11 |
从表中可以看出,当x=-2或x=1时,函数f(x)取得最小值-1.
当x=-1或x=2时,函数f(x)取得最大值11.(12分)
分析:(I)求出函数f(x)的导函数,令导函数大于0求出x的范围,写成区间即为函数f(x)的单调递增区间.
(II)列出当x变化时,f′(x),f(x)变化状态表,求出函数在[-2,2]上的极值及两个端点的函数值,选出最大值和最小值.
点评:求函数在闭区间上的最值问题,一般利用导数求出函数的极值,再求出函数在两个端点的函数值,从它们中选出最值.
练习册系列答案
相关题目
已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}( )
| A、是等比数列 | B、是等差数列 | C、从第2项起是等比数列 | D、是常数列 |